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NONLINEAR SYSTEM STOCHASTIC TECHNIQUES

FOR OCEAN ENGINEERING APPLICATIONS

Abstract

This report discusses the analysis and identification

of nonlinear system dynamic properties by stochastic
techniques on measured experimental data. Two ocean

engi~ne.erilng applications of this material are developed

Qf cQncern to NCEL representing: (a) nonlinear wave

force problems, and (b) nonlinear drift force problems.

General models are formulated consisting of parallel
linear and nonlinear systems where the input data can

be Gausstan or non-Gaussian. Formulas are stated for

s tatis.tical errors in estimates from measured random

data to help design experiments and to evaluate results.
The lasit section of this report derives various useful

input/Qutput relationships when stationary random data

pa~s through three types of nonlinear nonsymmetrical

Systems of ph-ysical interest.
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NONLINEAR SYSTEM STOCHASTIC TECHNIQUES
FOR OCEAN ENGINEERING APPLICATIONS

INTRODUCTION

The Naval Civil Engineering Laboratory (NCEL) has sponsored develop-

ment of a new approach for random data analysis and identification of

nonlinear systems under NCEL Contract N62474-86-7275 with J. S. Bendat

Company, the contractor. This research has been conducted in a series

of tasks, each of which resulted in an informal report. During this

period, work on related matters was performed by the J. S. Bendat

Company for other sponsors, and much work was also done as independent

research and development. The basic mathematical aspects of these new

results is now being published in book form by J. S. Bendat with John

Wiley & Sons, New York. However, some of the material that relates

specifically to ocean engineering will not be included. This present

NCEL contractor report complements the book by emphasizing certain

matters that represent important new practical ways to analyze and

identify nonlinear system dynamic properties from measured data, and

by focusing on ocean engineering problems of concern to NCEL.

This report discusses the following topics:

Section 1. Parallel Linear and Nonlinear Systems.

Section 2. Nonlinear Wave Force Models.

Section 3. Nonlinear Drift Force Models.

Section 4. Nonlinear Nonsymmetrical Systems.
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Techniques are explained in Section I on how to replace a large

class of single-input/single-output nonlinear models by equivalent

multiple-input/single-output linear models. This is a significant

achievement because it permits complicated nonlinear problems to be

solved by known linear procedures. Input data to the nonlinear

systems can be Gaussian or non-Gaussian; the data can be stationary

random data or transient random data. Formulas for non-Gaussian input

data require the computation of conditioned spectral density func-

tions. Formulas for Gaussian input data require only ordinary auto-

spectral and cross-spectral density functions when the parallel

nonlinear systems are square-law and cubic systems. Square-law and

cubic nonlinear systems are the nonlinear systems that occur when one

obtains an optimum third-order polynomial least-squares approximation

to an arbitrary zero-memory nonlinear transformation. Thus, linear

systems in parallel with square-law systems and cubic systems are of

major importance in modeling many physical problems.

Sections 2 and 3 discuss nonlinear wave force problems and non-

linear drift force problems. Appropriate models are formulated for

each problem where zero-memory nonlinear systems are followed by

linear systems. Two types of problems are solved: (a) the spectral

decomposition problem, and (b) the system identification problem.

Statistical errors in estimates are given to help design experiments

and to evaluate measured results. Section 4 develops input/output

relationships for stationary random data through three zero-memory

nonlinear nonsymmetrical systems: (a) three-slope systems, (b)

catenary systems and (c) smooth-limiter systems. Formulas are stated

for input/output probability density functions, correlation functions

and spectral density functions.

-2-



1. PARALLEL LINEAR AND NONLINEAR SYSTEMS

Before discussing techniques for analyzing and identifying system

properties in parallel linear and nonlinear systems, three topics need

to be covered that will occur in later material. These topics are

1. zero-memory nonlinear systems,

2. optimum third-order polynomial least-squares approximations to

zero-memory nonlinear systems, and

3. finite-memory nonlinear systems.

1.1 ZERO-MEMORY NONLINEAR SYSTEMS

A "zero-memory" nonlinear system is a system that acts

instantaneously on present inputs in some nonlinear fashion. It does

not weight past inputs due to "memory" operations as in convolution

integrals for constant parameter linear systems, where the present

value of the output is a function of both present and past values of

the input. For zero-memory nonlinear systems, the output y(t) at any

time t is a single-valued nonlinear function g[x(t)] of the input x(t)

at the same instant of time. Thus, as shown in Figure 1.1,

Y(t) = 8lx(t))(.)

where S(x) is a single-valued nonlinear function of x. Note that g(x)

is not a function of t.

-3-



1Nonlinear

x(t) 30- System y(t) = gtx(t)]8I x)

Figure 1.1 Zero memory nonlinear system.

The system g(x) is nonlinear means that for any constants aI, a2

and any inputs xI, x2

g(a1X1 + a2x2) a I(x l) + a2 g(x2) (1.2)

either because g(x) is not additive or because g(x) is not homogenous, or

both. The system is a constant parameter nonlinear system if the response

of the system is independent of the particular time of use, namely, if

an input x(t) is translated to an input x(t + v), then the output y(t) is

translated to an output y(t + Y). If the system is a constant parameter

nonlinear system, and if the input x(t) represents a stationary random

process, then the output Y(t) will also be a stationary random process.

For these cases y(t) = g[x(t)] gives y(t + ;) = g[x(t + 1)) and the

correlation functions

R (r) = E[x(t)y(t + T)] = E{x(t)g[x(t) + T)]} (1.3)

R yy(T) E[y(t)y(t + t)] = Elg(x(t)]g[x(t + T)]j (1.4)

are functions only of T as required for stationary random data.

-4-



Many examples of zero-memory nonlinear symmetrical systems are

discussed in References [, 2]. They include two-slope systems, dead-

zone systems, clipped systems, square-law systems, cubic systems,

hardening spring systems and softening spring systems. Three examples

of zero-memory nonlinear nonsymmetrical systems are treated here in

Section 4.

Three theorems are proved in References [l, 2] that are useful

for determining input/output relations when stationary random data

pass through a zero-memory nonlinear system. Theorem 1 applies to

arbitrary stationary random input data. Theorems 2 and 3 apply only

to Gaussian stationary random input data. These theorems will be used

in Section 4.

Theorem 1.

For any input data x(t) with probability density function p(x) where x(t)

passes through a zero-memory nonlinear system to produce y = g(x) which

is single-valued and one-to-one, the output probability density function

p2 (y) for the output y(t) satisfies the relation

P2(y ) = p(x) (1.5)
Idy/dxl

This theorem assumes that (dy/dx) = g'(x) exists and is not equal to

zero. When solving for p2 (y), the variable x on the right-hand side

should be replaced by its equivalent y from x = g- (y).

-5-



Theorem 2. (Price)

For GCassian input data x(t) with known autocorrelation function

R xx(), where x(t) passes through any zero-memory nonlinear system to

produce y = g(x), the output autocorrelation function R yy() for y(t)

satisfies the relation

DR (0.) E[g' (x )g'(x )A (1.6)

henever g'(x) - [dg(x)/dx] exists at x, - x(t) and 2 - x(t + z3

Theorem 3. (Bussgang)

For Gaussian input data x(t) with knawn autocorrelation function

] xx(), where x(t) passes through any zero memory nonlinear system to

produce y = g(x), the input/output cross-correlation function R xy)

satisfies the relation

Rx ( ) * axx(.)
RR (W R -v Cxpx . xXR "XSXa(~x-x Erx Sx)] (1.7)

In Theorems 2 and 3, the first-order probability density function

for x is given by the Gaussian form

p(x) - (/llor2)exp(-x 2 ,2o2) (1.8)

where the mean value is assumed to be zero and the vari-

ance 2 = E[x 2 (t)]. In Equation 1.7, the quantity

E[xg(x)] = f xg(x)p(x) dx (1.9)

-6-



Identification of Zero-Memory Nonlinear Systems

When y = g(x) is single-valued and one-to-one, it can be

identified from measurements of x(t) and y(t) by using the relation

YO Xo0

P2 (yo) P f P2 (y)dy f p(x)dx = P(xo ) (1.10)

where P(xo) and P2 (yo) are the probability distribution functions of

x(t) at x0 and of y(t) at yo = g(xo), respectively. To determine the

zero-memory nonlinear function y = g(x), one should select various

values of xo , calculate P(xo) and then determine the associated values

of yo such that P(yo) = P(xo).

1.2 OPTIMUM THIRD-ORDER POLYNOMIAL APPROXIMATION

Suppose y = g(x) represents any zero-memory nonlinear system

where y = y(t) and x = x(t). What is the optimum least-squares

approximation to y = g(x) by the third-order polynomial y = y(t) where

2 3
= alx + a2 x

2 + a3x (1.11)

under the assumption that x follows a zero mean value Gaussian

distribution? To be specific, what should be the choices of the

coefficients a,, a2 and a3 so as to minimize the quantity

Q = E[y - 5)2 = E[(y - a1x - a2x
2 _ a3x

3 )2  (1.12)

over all possible choices of these coefficients?

-7-



For any y, the Gaussian assvmption on x gives

Q = Ejy 2I - 281EIxy] - 2 2Etx 2yJ - 2a 3Ex 3Y)

+ 2 j(x 21 +2aE 4 ) + 2 E[X4 I + 2 3 E1x6  (1.13)

using the fact that E[x] = E[x 3] = E[x 5] a 0 for the p(x) of Equation
1.8. Then setting partial derivatives of Q with respect to a1, a2,

and a3 equal to zero shows

-Q = -2E[xy] + 2a8E[x2I + 2%Ex 4 ) 0 (1.14)
11

2
-a 2 = 2E(x y) + 2gL2 1  = 0 (1-15)

= -2E(x 3y) + 2&1E[x 4 ] * * 0 (1.16)

Now, using the fact that E[x 2] -x, E 3 x  n Efx 6  - for2 02 , E 3o' , and E[ x J S. o
the Gaussian p(x) of Equation 1.8 shows

3a 4  a * Ix 2 (1.18)
2-X

6a a 4 +15p! (1.19)1 xt ~



Hence, for any y, one obtains the y of Equation 1.11 from the

special coefficients

ISO6 E t, ) - 3d4E ( x3y) (1.20)aI  X
6018

x

.a -[x 2 A(1.21)a2 = 30 4

o2 E(x3y] - 3aE[ ,y

a3  - 8 (1.22)

x

Example. Square-Law System with Sign

Consider application of these matters to a square-law system with

sign where

y * xIxI (1.23)

For this particular y, the Gaussian assumption on x yield

E-XYj = E2x=lxlJ = 3='-'>o = o2a jTi (1.24)

E[x I = E~x lxi) * o (1.25)

Etx3yJ = E[x 4IxII = 5s) = O (; (1.26)

-9-



From Equations (1.20) to (1.22), one obtains

a, % OI(2) (1.27)

a2 = 0 (1.28)

a3 = (2/ )/ 3ax  (1.29)

Hence, the optimum third-order polynomial least-squares approximation

to xIxI by Equation 1.11 is

=a 1 x + a3 x

= Fl \f2i7)] x + [\fi2/.)/3ax1 x3 (1.30)

Thus xIxI can be treated as a combination of a linear system in

parallel with a cubic system. Figure 1.2 shows xlxI compared to

the ; of Equation 1.30.

-10-
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1.3 FINITE-MEMORY NONLINEAR SYSTEMS

When finite-memory operations are desired in connection with

zero-memory nonlinear systems, they can often be obtained by inserting

a constant-parameter linear system before and/or after the zero-memory

nonlinear system. Cases where the linear system is after the zero-

memory nonlinear system represent the cases of greatest interest and

are the only cases discussed in this report. Other cases where the

linear system precedes the zero-memory nonlinear system are discussed

in References [1, 2]. Figure 1.3 shows a finite-memory nonlinear

system with a linear system A(f) that is after the zero-memory

nonlinear system defined by g(x).

Zero-Memory

x(t) Nonlinear System A(f) y(t)
g(x) Vt

Figure 1.3 Finite-memory nonlinear system.

-12-



An extension of Figure 1.3 that is applicable to many physical

problems occurs when the input data x(t) passes through parallel

linear and finite-memory nonlinear systems as shown in Figure 1.4,

where H(f) and A(f) are two arbitrary constant-parameter linear

systems and where g(x) is any specified zero-memory nonlinear

system. The output noise data n(t) is assumed to be uncorrelated with

both x(t) and y(t).

H(f) n(t)

Yl(t)

Zero-Memory )

Nonlinear System A(f)

g(x) x2(t) y2 (t)

Figure 1.4 Parallel linear and finite-memory nonlinear systems.

-13-



Two problems are associated with the nonlinear model in Figure

1.4.

(1) Spectral Decomposition Problem. Given H(f), A(f) and g(x), plus

measurements only of x(t), determine the spectral properties of

y1 (t) and Y2 (t). If y(t) is measured as well as x(t), determine

also the spectral properties of n(t).

(2) System Identification Problem. From simultaneous measurements of

both x(t) and y(t), identify the optimum frequency response

functions H(f) and A(f) to minimize the autospectrum of n(t).

Sections 1.4 and 1.5 outline practical techniques that can solve these

two problems. In Section 1.4, input data can be non-Gaussian, whereas

in Section 1.5, input data are assumed to be Gaussian. Thus, these

techniques are applicable to physical situations of widespread

importance without restricting the probability density function of the

measured input data. More general models than Figure 1.4 are

considered involving one linear path and two parallel nonlinear paths

as shown in Figure 1.5. Sections 2 and 3 apply these techniques to

wave force problems and drift force problems.

-14-



1.4 NON-GAUSSIAN INPUT DATA

Consider the general single-input/single-output nonlinear model

of Figure 1.5 with three parallel paths where the input data x(t) can

be non-Gaussian. Let g2[x(t)] be an arbitrary known zero-memory

nonlinear transformation of x(t) and let g3[x(t)] be a different

arbitrary known zero-memory nonlinear transformation of x(t). Let

xl(t) = x(t), x2 (t) = g2[x(t)], x3 (t) = g3[x(t)] (1.31)

represent the three usually correlated input records to the three

linear systems Al(f), A2 (f) and A3(f), respectively. The three

associated usually correlated output records from these systems are

denoted by y1 (t), Y2 (t) and Y3 (t), respectively. To complete the

model, let n(t) represent extraneous uncorrelated output noise and let

y(t) represent the total output from the system. A special important

case of Figure 1.5 is when g2[x(t)] = x 2(t) and g3[x(t)] = x 3(t).

This case is treated in Section 1.5.

-15-



x Af)yt) n(t)

x(t) 9 xMt)A 2 (f) y(t)/"T
x3(t) y3 (t)

Figure 1.5 General single-input/single-output nonlinear model
for non-Gaussian input data that passes through a
linear system in parallel with two finite-memory
nonlinear systems.

Note that Figure 1.5 simplifies to Figure 1.4 when g3[x(t)] = 0

so that all results obtained here apply to the model in Figure 1.4 by

merely setting x3(t) and all subsequent terms computed from x3(t) to

zero.

Figure 1.5 can be replaced by the equivalent three-input/single-

output linear model of Figure 1.6 where the capital letter quantities

are Fourier transforms of associated small letter quantities. To be

specific, let



X1(f) = ?Cx1(t)], Y1(f) * 1yi(t)] (1.32)

X2(f) = ?fx 2(t)], Y2(f) a FCY 2(t)] (1.33)

X3(f) = ?I[x3(t)], Y3(f) -?[y3(t)] (1.34)

N(f) = ?Cn(t)], Y(f) - ;7y(t)] (1.35)

Measurement of x(t) and y(t) enables one to compute the quantities

X1(f), X2 (f), X3 (f) and Y(f) when x2(t) and x3(t) are known.

Recognition of the equivalence between Figures 1.5 and 1.6 is a

significant achievement because Figure 1.6 can be solved by well-known

multiple-input/single-output techniques that are derived and discussed

fully in References (3, 4]. These procedures are applicable for input

data that can be Gaussian or non-Gaussian. Independent research on

these matters based on References (5-73 is in Reference ($).

X1(f)

Xjg)A(f) Yj( f ) Yf

X2(f) A2(f} Y

X3(f) Y3(f)

Figure 1.6 Equivalent three-input/single-output linear model
to Figure 1.5 where the three input records can
be correlated.

-17-



The basis of multiple-input/single-output procedures for solving

Figure 1.6 is to change the input records by conditioned spectral

density techniques so that X1 (f) is left alone, X2 (f) is changed to

X2.1 (f) where the linear effects of Xl(f) are removed from X2 (f), and

X3 (f) is changed to X3.2 !(f) where the linear effects of both Xl(f)

and X2 (f) are removed from X3 (f). These new input records, X1 (f),

X2.1 (f) and X3.2 !(f) will then be mutually uncorrelated and become the

inputs to the revised three-input/single-output linear model shown in

Figure 1.7. The noise output record N(f) and the total signal output

record Y(f) are the same as before. However, the three previous

separate output records Y1(f), Y2 (f) and Y3(f) are now replaced by

three new separate output records Ya(f), Yb(f) and Yc(f) that will be

mutually uncorrelated. Also the three previous linear systems Al(f),

A2 (f) and A3 (f) are now replaced by three new linear systems L1 (f),

L2 (f) and L3 (f).

Ul(f) = X1 (f) L1(f) I

U2(f ) = X2,1(f ) . [L(f ybf Y(f)
YbY~f)

U3(f) = X3.2!(f) Y
I Yc(f)

Figure 1.7 Revised three-input/single-output linear model
equivalent to Figure 1.5 where the input records
are mutually uncorrelated.

-18-



To simplify the notation, the three mutually uncorrelated input

records in Figure 1.7 will be denoted by U1 (f), U2 (f) and U3(f) where

U1 (f) = Xl(f) = X(f) (1.36)

U2 (f) = X2.1(f) (1.37)

U3 (f) = X3. 2 !(f) (1.38)

Figure 1.7 is now essentially three separate single-input/single-

output linear models where the linear systems Ll(f), L2 (f) and L3 (f)

can be computed by the usual spectral relations

G uly (f)

Ll(f) l l(f )  (1.39)
ulu

2Y(f)

L2 (f) (f) (1.40)
u2u2

G (f)

L3(f) T 3 (f) (1.41)
u3u 3

The G(f) quantities are one-sided spectral density functions that can

be computed easily using formulas in References [3, 43.
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Note that the linear system Ll(f) is the same as the overall optimum

linear system Ho(f) between the input x(t) and the total output y(t)

as computed by

Ho(f) = ( (1.42)

where Gxy(f) is the cross-spectral density function between x(t) and

y(t), and Gxx(f) is the autospectral density function of x(t).

Other relations for Figure 1.7 are as follows.

Y(f) = Ya(f) + Yb(f) + Yc(f) + N(f) (1.43)

Gyy(f) = G Ya(f) + G byb(f) + G ycc(f) + G nn(f) (1.44)

GyYa(f) = ILI(f) 2 G M Y2 fGM(.5ayaa u b' 1c' U nny y

Gl (f) = )12G M Yu2Y(f)Gyy(f )  (1.46)
2G2 (f 2

Gyby b (f) = L2(f)I = u2Y (f)Gyy(f) (1.4)

2uu3 2

Gyc (f) = IL3(f)I f) = Yu2(f)Gyy(f) (1.47)

Gy2 M IIYf2 M ( Y 2 (f)G (f) (1.48)

Gnn(f) = [ - UlY(f) - u2Y - 3y (4

2 2 f)ad2
The quantities y 2l(f), Y2 (f) and y (f) are the ordinary coherenceuly u 2y u 3y
functions between y(t) and the three inputs ul(t), u2 (t) and u3 (t),

respectively.
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The quantities U2(f) and U3(f) in Figure 1.7 are given by

U2(f) = X2(f) - L12(f)Xl(f) (1.49)

U3(f) = X3(f) - L13(f)XI(f) - L23(f)U2(f) (1.50)

where

L G 12(f) (.1L12(f) = G11(f) (.1

L13(f = G 1(f) (1.52)

L2 f G G23(f) - L 13 (f)G 21(f) (1.53)2()=G 22(f) - L 12 (f)G 21(f)

From knowledge of Ll(f), L2(f) and L3(f), the linear systems Al(f),

A2(f) and AW() can be computed by the algebraic relations

AW() = L3(f) (1.54)

A2(f) = L2(f) - L23(f)A3(f) (1.55)

Al(f) = L1(f) - L12(f)A2(f) - L13(f)A3(f) (1.56)



In terms of more basic spectral quantities, the terms used in

Equations 1.39 to 1.41 to compute Lj(f) L2(f) and L3(f) are

GUJy(f) = Gly(f) (1.57)

G ulu(f) = G11(f) (1.58)

G u2y (f) = G2y(f) - Ll(f)G21(f) (1.59)

G uu2(f) = G22(f) - L12(f)G21(f) (1.60)

G u3y (f) = G3y(f) - Ll(f)G31(f) -L 2(f)G3u2(f) (1.61)

G ~3()= G33(f) - L13(f)G31(f) -L 23(f)G3u2(f) (1.62)

where

G3u2(f) = G32(f) - L12(f)G31(f) (1.63)

All of these terms are generally required when dealing with non-

Gaussian input data. Note that Gu 2u 2(f) 0 G 22(f) and G 3 u3 (f) 0 G33(f)

except for special cases.
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Some further points are worthy of note. The relation

L1(f) = Al(f) + L12 (f)A2 (f) + L13 (f)A3 (f) (1.64)

shows that, in general, L1 (f) f At(f). Thus determination of L1(f),

representing the overall optimum linear system Ho(f) between X1 (f) and

Y(f), is not the same as the actual linear system A1(f) that exists

between X1 (f) and Y1 (f). The spectral output of y1(t) given by

G Y1(f) = JA1 (f)I 2G1 1(f) (1.65)

will generally differ from the spectral output of Ya(t) given by

G ya (f) = iL1 (f)j2 G11 (f) (1.66)

Note also that the relation

L2 (f) = A2 (f) + L23(f)A3 (f) (1.67)

shows that in general that L2(f) t A2 (f). The system L2 (f) represents

the overall optimum linear system between U2 (f) and Y(f). This is not

the same as the actual linear system A2 (f) that exists between X2 (f)

and Y2(f). Also, the spectral output of y 2 (t) given by

Gy2y2 (f) = JA2(f)I 2G22 (f) (1.68)
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will generally differ from the spectral output of Yb(t) given by

Gyb b(f) = IL2(f)I2Gu2u2 (f) (1.69)

However, note the equality relation that

L3(f) = A3(f) (1.70)

where L3 (f) represents the overall optimum linear system between U3 (f)

and Y(f), while A3 (f) is the actual linear system between X3 (f) and

Y3 (f). In general, since G u3u3(f) t G33 (f), the spectral output of

Y3 (t) given by

Gy3Y3 (f) = JA3 (f) 2G33 (f) (1.71)

will differ from the spectral output of yc(t) given by

Gyc (f) = IL3 (f)
2Gu3u 3 (f) (1.72)

Example of Figure 1.4

Consider the example of Figure 1.4 where a linear system is in

parallel with only one finite-memory nonlinear system. This example

corresponds to Figure 1.5 where H(f) = A1 (f), g(x) = g2 (x), A(f) =

A2 (f) and g3 (x) = 0. Appropriate formulas for this example are as

follows.
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U1 (f) = Xl(f) (1.73)

U2 (f) = X2 (f) - L12 (f)X1 (f) (1.74)

L12(f) = [G12(f)/G 11(f)] (1.75)

L1(f) = [G1y(f)/G 11(f)] (1.76)

L2(f) = EGu 2Y(f)/G u2u2(f) (1.77)

where

Gu2Y(f) = G2y(f) - L12(f)Gly(f) (1.78)

Gu2u2(f) = G22 (f) - L12(f)G2 1(f) (1.79)

Finally, for the systems in Figure 1.3,

A(f) = A2 (f) = L2 (f) (1.80)

H(f) = A1 (f) = L1 (f) - L12 (f)A(f) (1.81)

Note that H(f) L1(f) unless A(f) = 0. Individual spectral outputs

are

GyYl(f) -IH(f)1 2 G11 (f) (1.82)

Gy2y2(f) - IA(f)1 2G22(f) (1.83)

Gy aYa(f) -= L1(f)12G11(f) (1.84)

G yb(f) - IL2 (f)1 2 Gu2u2(f) (1.85)
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The total output spectral density function is given by

Gyy(f) = G yaa(f) + G Yb(f) + G nn(f) (1.86)

where

G (f) = Yl(f)G (f) (1.87)

YaYa uly yy

G ( 2  (f)Gyy(f) (1.88)lybbf = u2Y

G f) 1 y2Y(f) 2 (f)uGyyfM (1.89)Gnn uyf ) 2 y

These formulas are general results for Figure 1.4 where the input data

can be non-Gaussian and where X2 (f) represents the Fourier transform

of any zero-memory nonlinear system output x2 (t) - glx(t)].

This concludes the example of Figure 1.4.
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1.5 GAUSSIAN INPUT DATA

A special case of great interest is the case where input data are

Gaussian and where the zero-memory nonlinear systems in Figure 1.4 are

g2[x(t)] = x2 (t), g3 [x(t)] = x3 (t) (1.90)

This case, shown in Figure 1.8, is the Case 1 single-input/single-

output nonlinear model in References [I, 21.

Yl (t)

x(t) Squarer U A f) ( Mx~~t) 2(t ) yt
x2(tt)

CuberA 3(f)

x3(t) y3 (t)

Figure 1.8 Case 1 single-input/single-output nonlinear model
with Gaussian input data.
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The Fourier transforms X2 (f) and X3(f) on the related three-

input/single-output linear model of Figure 1.6 have a very special

meaning for this Case 1 nonlinear model. Specifically, X2 (f) is the

Fourier transform of x2(t) and X3 (f) is the Fourier transform of x3 (t)

as denoted by

X2(f) - ?Lx 2 (t)] (1.91)

X3 (f) = F[x3(t] (1.92)

For Gaussian input data, x(t) will be uncorrelated with x2 (t) but x(t)

will be correlated with x3 (t). It follows that the cross-spectral

density functions G1 2 (f) = 0 and G2 3 (f) = 0. Also, as shown in

Reference [11 the cross-spectral density function

2

Gl3 (f) = 3oxG11(f) (1.93)

where the variance a 2  E[x 2 (t)] when Elx(t)] = 0. Here, L12 (f) = 0x

and L2 3 (f) - 0 but

L13 (f) = 32x  (1.94)

The three mutually uncorrelated input records U1 (f), U2 (f) and

U3 (f) in Figure 1.7 are given now by the simple relations

U1 (f) - X1 (f) (1.95)

U2(f) z X2(f) (1.96)

u3 (f) ' X3(f) - OxX(f) (1.97)

Thus, Figure 1.7 becomes Figure 1.9 for the model of Figure 1.8, and

the L-systems can be computed easily by Equations 1.39 to 1.41.
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U1 (f) = X1(f) Ll(f) N(f)

U2 (f X2(f) L f,

U3(f) =X 3(f) - 3a 2xx1(f)L3 f

Figure 1.9 Revised three-input/single-output linear model
equivalent to Figure 1.8 where the input records
are mutually uncorrelated.

Specifically for the model of Figure 1.9, the L-systems are given by

the formulas

L(f) a * (1.98)

L2(f) 0 ( (1.99)

L u3y (f)3(f) ") (1.100)

where

Gu3y (f) - G3 (f) - 3c2GlM(f) (1.101)

G (f) - G - (1.102)
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In place of Equations 1.54 to 1.56, simpler relations between the

linear systems in Figures 1.8 and 1.9 are now

A3 (f) = L3(f) (1.103)

A2(f) = L2(f) (1.104)

Al(f) = L1(f) - 3a2A3(f) (1.105)

Note that computation of A1 (f) requires knowledge of A3 (f), and that

At(f) f Ll(f) when A3(f) t 0. Also the relation

L1(f) = At(f) + 3a2 A(f) (1.106)

shows that L1 (f) is a function of the input variance a2 and so will

change with different input records. However, the systems Al(f),

A2(f) and A3(f) in Figure 1.8 are independent of the input variance

when Figure 1.8 is a valid nonlinear model. Thus, conventional linear

system identification techniques where only Lj(f) is computed give

erroneous estimates of A1(f).

This concludes Section 1.
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2. NONLINEAR WAVE FORCE MODELS

Section 2 details a methodology for analyzing parallel linear

and nonlinear systems involving a square-law operation with

sign. The analysis is applied specifically to the problem of

decomposing random wave forces on a structure into linear

(inertial force) and nonlinear (drag force) components. A

procedure is presented for identifying the individual initial

and drag force parameters based solely upon measurements of the

input wave velocity and the output wave force. The input wave

velocity is assumed to be a Gaussian stationary random process

with arbitrary autospectral density function. Formulas are

stated for random errors in estimates. These formulas are also

useful in the design of experiments.
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2.1 FORMULATION OF WAVE FORCE MODEL

Morison's Equation is widely used to study wave forces on

structures, References [7, ?-iH], where a wave force output y(t) due

to a wave velocity input x(t) consists of two main components:

(1) an inertial force m(t) that is proportional to the derivative

c(t) of the wave velocity x(t),

(2) a drag force d(t) that is proportional to x(t)fx(t)f.

Morison's Equation is thus of the form

y(t) = m(t) + d(t) = C1 c(t) + C2 x(t)Ix(t)! (2.1)

where the exact -ature of the constants C1 and C2 would either be

known or to be determined. In Morison's work, C1 and C2 are not

functions of frequency. It is clear that Figure 1.4 can represent

Equation 2.1 by setting

H(f) - C1 (j2if)
(2.2)

A(f) 
- C2

Equation 2.1 can apply to more general situations by allowing C and C2 to

be functions of frequency. Figure 2.1 illustrates this wave force problem

for a tall structure in the ocean.
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The problem of concern is to determine the spectral properties of the

inertial component m(t) and the drag component d(t) from measurements of

the wave velocity x(t) and the net force y(t). This determination is

difficult for two reasons:

(a) the drag force d(t) has a nonlinear relationship of the type

x(t) jx(t) 1, namely, a square-law operation with sign, and

(b) the inertial force m(t) and the drag force dCt) are correlated.

The specific model to be evaluated here is shown in Figure 2.2 where

n(t) is extraneous noise, and H(f) and A(f) are the frequency response

functions of constant parameter linear systems given by the Fourier trans-

forms of weighting functions h(r) and a(c), namely,

H(f) ' 7[h( )l) - h (T)e'J2W fTd(
(2.3)

A(f) a()- a() e'J2fTdT

The system xjxI is a zero memory nonlinear system with an instantaneous

output w(t) = x(t) jx(t) 1. Note that unlike Morison's relationship in

Equation 2.1, the systems H(f) and A(f) are not assumed to be constants

or even real numbers.

-33-



W ave velocity Input W ave for e out pu

x(t) -lo 
y(t)

Figure 2.1 Illustration of wave force problem.

a a t)

Figure 2.2 Nonlinear wave force model.
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Two problems will be treated for the model of Figure 2.2.

(1) Spectral Decomposition Problem, Given H(f) and A(f) plus.

measurement of x(t) only, determine the spectral properties of m(t)

and d(t). If y(t) is measured as well as x(t), determine also the

spectral properties of n(t).

(2) System Identification Problem. From measurements of x(t) and y(t),

identify the optimum frequency properties of H(f) arid A(f) to

minimize the autospectrum of n(t).

2.2 SPECTRAL DECOMPOSITION PROBLEM

Referring to Figure 2.2, assume the input record x(t) is a

sample time history of a stationary (ergodic) Gaussian random

process with mean value Vx = E[x(t)] = 0. Nonzero mean value

inputs are treated later in Section 2.4. To solve the Decomposition

Problem for the model in Figure 2.2, an approximation is required

for the nonlinear operation x * The third-order polynomial least-

squares approximation is given by using Equation 1.30, namely,

S3(2.4 )

k(302X + X3) k 

where k is the same as a3  in Equation 1.29 and ax is the standard
deviation of x(t) defined by

(= [ X(t) -x)211 (2.5)

In words, xjxI can be replaced by the sum of a linear operation plus a

cubic operation. For an input x(t) with a zero mean value, this

nonlinear system approximation is FigUre 2:3. Substitu-tion of.

-35-



x(t) . xlt)IXlt)

Figure 2.3 Third-order polynomial for x(t) I x(t) .

x (t) A 2
- -A() dt)

Figure 2.4 Nonlinear wave force model with correlated
outputs representing Figure 2.2.
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Figure 2.3 for the xjxj operator into Figure 2.2 yields the model shown

in Figure 2.4 which, henceforth, is used to approximate the model in Figure 2.2.

Formulas will now be derived to compute the autospectral density functions of

m(t) and d(t) from knowledge of R(f) and A(f), using measureMents of

x(t) and y(t).

It should be noted here that Figure 2.4 is a special case of Figures 1.5

and 1.8 that can be analyzed by formulas in Sections l.h and 1.5. However, it

is more instructive to directly develop here the desired formulas for this

special problem. In agreement with physically measurable results, one-sided

spectral density functions will be used instead of theoretical two-sided

spectral density functions.

In Figure 2.4, for a Gaussian input x(t) with zero mean value and

standard deviation ax, the terms m(t), d(t), n(t) and y(t) will also

have zero mean values. Formulas for the Fourier transforms of such records

with long, but finite length T are given by

)C(f) _9Tx(t] = f X(t)ej 2 ftdt
o0 (2.6)

Y (f) [y (t)] _ T Y(~ 1ftd
0

It is assumed that x(t) and y(t) can be divided into nd associated sub-

records, each of length T, to compute desired averages. Autospectral and

cross-spectral density functions of x(t) and y(t) are then computed for

one-sided spectra by

(f) E " (

xx T (

G -M E [ (f)Y(f)J
Gy (f) =

Gxyf T [X*(fly(f)
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where the asterisk (*) denotes complex conjugate and E[ J is
approximated in practice by an ensemble average over nd
quantities.

In terms of the functions H(f) and A(f), Fourier transforms
of the output quantities over long, but finite length records

Yield

Y(f) M(f) + D(f) + N(f) (2.8)

Mf) = H(f)X(f)

(2.9)
D(f) = A(f)w(f)

where W(f) is the Fourier transform of w(t) defined by

W(f) = k[3 02 X(f) + X (f)] (2.10)

Here, w(t) = k[Sa2C x(t) + x 3 (t)] and

X3 (f) =~x~() fx,(t)ei 2 Tftdt (2.11)

The quantity N(f) is the Fourier transform of the- unmeasured
extraneous output noise n (t) that is assumed to be uncorrelated with

both m(t) and d(t).

Figure 2.4 is equivalent to the two-input/single-output linear model
shown in Figure 2.5 where the inputs x(t) and v(t) are correlated. Figure
2.5 is a special case of Figure 1.6.

-38-



vMt kx3(t)

Figure 2.5 Two-input/single.output linear model with correlated
inputs that is equivalent to Figure 2.4.
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Let y(t)=, x 3 (t = x 3(t) with Ejx(t)] - 0. The cross-correlation

function

R y(T) = E[X(t)y(t+T)] = E[x(t)x3(t+T)]

= E[x(t)x(t+T)x(t+T)X(t+T)]

For zero mean value Gaussian data, E(y(t)] = 0 and a fourth-order
moment breaks up into the product of'all possible pairs of second-order

moments. Specifically,

E [a 1 a 2 a 3 a 4 ] E[aja 2 . -r[a 3 a 4 ] + E [a 1 a3 ]. E 1a2 a 4 + E[aa Faa]3

Hence, R (T) becomes
xy

R YT) - 3E[X(t+T)X(t+T)]E[X(t)X(t+T) 
3o 2R (T)x xx

The corresponding cross-spectrum relationship is

G (f) 3 ax G (f)
xy xx

This proves by letting.y(t) = 3 3(t) that

2
13XX3(f M 3a 2G xx (f )  

(2,12)

Note that.

xx 3 (f) G xx(f) Gx3x (f)
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The one-sided autospectral density function of x3 (t) x3 t) is

G 2 E fx( (2.13)Gx3X 3 (fX 3*()3(]

This computation can be done directly. The one-sided autospectralde

function of w(t) is defined by

G (f) EL (f)W(f (2.14)

This computation requires some extra work.

A formul'a will now be derived for Gww(f) in terms of

Gxx(f) and GX n (f). Equation 2.12. proves that x(t)
3 .3

and x3 (t) are correlated with

G xx (f). = 3 2XGXX (f) (2.15)

Hence,

G (f k2 9 a4,; + a 2G M(f + 3a G (f)+
w l XX X 3 X3  3

- k2 27o4Gx(f.)+ Gx ~(f)] (2.16)

It follows also that

G M( - k[3a 2G (f) 3 G (f)l 6ko2 G (f) (.7
XL X Xx 3 . X j

This shows that x(t) and w(t) are correlated.
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It is now simple to compute *the desired autospectral density

functions of m(t) and d(t). From Equation 2.9,

GM (f ) = {H(f)1 Gxx(f) (2.1)

This represents the inertial term in Equation 2.1, Also

2
Gdd (f) = IA(f)I Gww (f) (2.19)

where Gww(f) should be computed using Equation 2.16. This

represents the drag term in Equation 2.1. The cross-spectral

density function between m(t) and d(t) is obtained using-

Equation 2.1' as follows.

G~1(f) = Ejj (f)d (f)] H (f)A(f) G (f) (2.20)

, 6kO2 H* (f)A(f)GXX'f)x

Thus, m (t) and d(t) are correlated and from Equation 2.8

Gy f (f) * Gdd(f) * Gmd(f) + Gd(f) * Gnn(f) (2.21)

Note-that computation of Equations 2.18 and 2.19. involves measurement

only of x(t), whereas Equation 2.21 requires measurement also of y(t). When

both x(t) and y(t) are measured, Equation 2.21 can compute the autospectrum

of the unmeasured n(t). Good models occur when G (f) is small compared to

G (4).
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From Equations 2.16 and 2.19 the drag term can be written

as 2 1 -

Ga (f) k2  G[2704G (f) + G (£ (2.22)
Gdd IAfiL 7 ,X ,cx3 x 3  1

This Gdd (f) is the sum of two parts obtained by using the

correlated terms x(t) and x3 (t). An alternative formula for

Gdd (f) is derived later in Equation 2.44 where Gdd (f

is based upon two terms that are uncorrelated. From Equation

2.21, note that

(f). # G + Gdd (f) + G nn(f) (2.23)

To obtain Gnn(f), Equation 2.21 shows that

G, (f) =G (f) - G(f) + Gddf + Gm G +*~ (f) (2.24)

A more informative formula for Gnn(f) will be derived later

in Equation 2.49.

2.3 SYSTEM IDENTIFICATION PROBLEM

The starting point for this problem is the model in Figure 2.4

where it is now assumed the properties of H(f) and A(f) are not

known. These properties will be determined from x(t) and y(t)

based upon minimizing the spectral density function Gnn(f) of

n(t) over all possible choices of linear systems to predict y(t)
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from x(t). It is assumed here that the mean value

lix - E[x(t)) --O. Nonzero mean value inputs are treated in

Section 2.3.

In Fi-gure 2.4,it follows that

Y(f) - H(f)X(f) + kA*(f)[302X(f) + X3 (f)] + N(f) (2.25)

and using Equation 2.15,

Gxy(f) = H(f)Gx M + 3k 2 A(f)G, (f) + kA(f)G (f) (2.26)

=L(f) + 6ka 2A(f) JG(f)

Hence, as proved in Reference £2), the optimum linear system is
given by

G(f) x 2 (2.27)
H G (f)( = H(f) + 6ka2A(f)

0 xx(f
This system H O(f) computed from x(t) and y(t) only, gives the

minimumGnn(f) over all possible linear systems. It also auto-

matically makes n(t) uncorrelated with x(t).

Note that H (f) 0 H(f) and that H 0(f) is a function of the input variance0 0
2 Thus H (f) will change with different inputs while H(f) will be the same.

0

Note also that determination of H(f) requires knowledge of A(f) as well as

H (f). By using H (f) instead of H(f), Figure 2.4 can be redrawn as Figure0 o

2.6. Thi6 is then equivalent to the two-input/single-output linear model

of Figure 2.7 where x(t) and u(t) are uncorrelated. Figure 2.7 is a special

case of Figure 1.9. Figure 2.7 can also be derived directly from Figure 2.5.
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n t)

H(f)= H(f) + 6kU2A(f)
f 

(t)t

x~t _ _ y Mt

.. ! k 2

Figure 2.6 Nonlinear wave force model with uncorrelated
outputs that is equivalent to Figure 2.4.

n(t)

32, x(t) Ho(f ) 
= H(f) + 6koax Af

._)bY (t )

u(t) -k[x3(t) - 3o x 2xMIt)]f

Figure 2.7 Two-input/single-output linear model with
uncorrelated inputs that is equivalent to
Figure 2.5.
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Fourier transform relations for Figures 2.6 and 2.7 show that Y(f)

is the sum of a linear term Y (f), an uncorrelated nonlinear term Y (f),

and an uncorrelated noise term N(f) where

Y (f)- H (f)X(f) = [H(f) + 6ka2A(f)I X(f) (2.28)

Y uf. A(f) U(f) kA(f) [X(f) - 3a2X(f)] (2.29)

Here, the cross-spectral density function

G (f)= 0 (2.30)yo Yu

Now, noting that the total force is given by

Y(f) - Yo ( f ) + Yu(f) + N(f) (2.31)

it follows from Equation 2.30 that the autospect'rum of the total

force decomposes into three additive terms, as follows.

G y(f) = G (f) + G Yu(f) + G nn(f) k2.32)

This gives the model in Figure 2.6 that is equivalent to Figure 2.h.

The quantity u(t) in Figure 2.6 is not the same as the quantity
w(t) in Figure 2.4h and U(f) # W(f). In this case,

u(t) k[x3(t) - 302 x(t)] (2.33)

which has a Fourier transform from a long but finite record given

by

U(f) = k[x3 (f) - 3o2X(f)] (2.34)
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Here, x(t) and u(t) are uncorrelated. Using Equation 2.15, the

autospectrum of u(t) is given by

GuVX-k [x M 3 2 G Mf - 3a2*G (f + 90 4GX (f)3 3xxx 3 . x x3 x

= k2 (f) - 9a 4G (f)] (2.35)

Also, from Equation 2.34,

Guy(f) = k[ x (f) - 3axGxyf). (2.36)

However,

G y(f) = A(f)Guu (f) (2.37)

Hence, it follows that

G (f) - 3a2Gx(f
Guy3cG (fy

A(f) - -(f x 3y x xy (2.38)
kJ~ k[Gx~ 3(f)3 - 90 xG ,x (f)]

where computations for G x3x3(f) and G x3Y(f) can be done directly from

X3 (f) and Y(f), similar to direct computations of G (f) and G (f) from3xx xy
X(f) and Y(f). Equation 2.38 is the desired result to identify the system

A(f).
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The system H(f) can now be determined. From Equation 2.27, using

the just computed A(f),

H(f) = Ho ( f) - 6ka 2A(f) (2.39)
x

This is the desired .result to identify the system H(f).

After A(f) and H(f) are computed,' then all formulas in

Section 2.2 follow. In particular, one obtains desired inertial

and drag results by using Equat ons 2.1b and 2.19. From

Equations 2.16 and 2.35,

G (f) = 36k 2 a4G (f) + Guu (f) (2.ho)
ww x xx u

Hence, in place of Equation 2.19, one can write

f(f) G + (2.1)

where G 4  (f) represents the linear part of the drag term

given by

G (f) = 36k 2 o4 IA(f)1 2G (f) (2.h2)

and G - (f) represents the uncorrelated nonlinear part of

the drag term given by

Gd4(f) = 1A(f) 2Guu(f) (2.43)

Here, Guu(f) should be computed using Equation 2.35. Thus,

G dd(f) is the sum of two parts obtained from the

uncorrelated terms x(t) and u(t), namely,

( A(f)i2[36k24Gxx(f) + Guu(f)] (2.44)
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Equation 2.44 is more instructive than Equation 2.22. Further newresults for the autospectral density functions of yo (t) and

Yu (t) in Figures 2.6 and 2.7 are

G . (f, M Ho (f) 12 G xx f (2.45)

using Ho(f) from equation 2.67, and

G YUy(f) = A(f) 12 SuU (f) (2.46)

using A(f) from Equation 2.38 and 0 uu(f) from Equation 2.35.
Note that Equation 2.46 is the same as Equation 2.h3.

The linear conference function Yxy(f) between the input

x(t) and the total output y(t) is defined by

2 xy
-f = -------

_Z___= (2.47)G (f) G (f)G (f)
yy xx yywhere the Gy Yo ( f ) is given by Equation 2.-5. The nonlinear

coherence function q2 (f) is defined here by
xy

G (f)
2 /GfuYU 

(2.48)

yywhere the G YYU(f) is given by Equation 2. 6.. Equation 2.48 is the

same as the linear coherence function between the uncorrelated input u(t) and

the total output y(t).
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In terms of these coherence functions, the output noise

autospectral density function is given by the simple formula

Gnnf) - xy - q2(f)] Gyy(f) (2.49)

Clearly, this model will be valid at frequencies where the sum
2 2

tY2y(f) + qx(f)] is close to unity.

2.4 NONZERO MEAN VALUE INPUT

Suppose that the input x(t) has a nonzero mean value

x= E[x(t)] 0 0. For the case where x(t) represents the

velocity of an ocean wave, Ux would be the underlying current.

When.lix 0, the. input x(t) should be expressed as

X(t) - [t - VX] + j (2.50)

consisting of a variable input term [x(t) - Ix] with zero mean

value, plus a constant term Ux. Now the cubing operation

x 3 (t) becomes

x 3 (t) Ex t) A xi + UXJ 3 (2.51)

.3 2
[ - + 3(11)X) -l].+ 3(uX) 2 [X(t) - UxI+ (Ux) 3

3
where the final constant term U produces an effect in the

spectrum of x 3 (t) only it f - 0. For f 0 0, Equation 2.51.

shows that the diagram in Figure 2.8 should represent the nonlinear

operation x3 (t) for the input tx(t) - lix]. Note that Figure

2.8simplifies to the cubic operator by itself when Vx 0.
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Figure 2.8 Nonlinear system for x 3t) when 0.

Figure~~~~~ 2.2olna ytmaprxitigxtj~
whe3k~ (o0.X
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Consider next the nonlinear operation x(t)j x(t) of a

square-law system with sign which is represented by the

least-squares approximation of Equation 2.4, namely

x(t) Ix(t)I 3ka2x(t) + kx 3 (t) (2.52)

X

Here from Equation 2.50,

x (t)Ix(t)I 3k0a 2 [x(t)_wX] + jX + k([x(t)-wi + +j-
3 2

k X(t)-.X] + 3kjX ,-(t)-Ij]

+ 3k (a 2 + )12)xt-j]+ k(3a 2 11+ )1) (2.53)
X X IXj X

where the final constant term k(3 2 X + 113) produces an

effect in the spectrum only at f - 0. For f . 0, Equation 2.52

shows that the diagram of Figure 2.9 should represent the nonlinear

operation x(t) jx(t)I for the input Ex(t) - lix]. Note that

Figure 2.9 simplifies to Figure 2.3 when u. 0.
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Return now to the original problem covered by Figure 2.4. For

situations where the input changes to [x(t)-iy] with i x  o,

Figure 2.4 becomes the new extended Figure 2.1-0. For Gaussian data, a

linear output is uncorrelated with the output from a square-law operation

but is correlated with the output from a cubic-law operation. Hence, in

place of Figure 2.6, when the input changes to [x(t) - ux ] with . x  0,

Figure 2.6 becomes the new extended Figure 2.11.

The optimum linear system H (f) in Figure 2.11is computed aso

before by the equation

G XY(f) (-4
o GXX (f)

In terms of H(f) and A(f), one finds that

(f) -H (f ) + 6ka 2 AMf + 3kV 2 AM (2.55)

-Note this reduces to Equation 2.27 when Vx = 0. In Figure 2.11,

the Fourier transform U(f) of u(t) is given in place of Equation

2.34 by

U(f) - k[X3 (f) + 3P X2 (f) - 3a 2x(f)] (2.56)

where

X(f) Tf xt-i j (2.57)

X2 (f) =tjL x(t)-1 x  (2.58)

X3 (f) ='?etx(t)-xj (2.59)
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Figure 2.11 Extention of model in figure 2.6
when U 0.

-54-



One should now proceed as was done previously to Compute

G (f) and G (f) where

uu uy

Gu (f) = U(f) U(f (2.60)

G (f) - E U(f)Y(f) (2.61)

Then , the system A(f) is computed by

A(f) - Guy(f) (2.62)GU (f)

and from Equation 2.55, the system H(f) is computed by

H(f) = Ho(f) - ka2 A(f) - 3kV 2A(f) (2.63)
X. x

The inertial component m(t) in Figure 2.10 has the sutospectrum

GI (f) = JH(f) 2 G xx() (2.64)

The drag Component d (t) in Figure 2.10 has the autospectrum

Gdd(f) IA(f)2 G ww(f) (2.65)

where G (f) in Figure 2.10 should not be confused with G (f) in Figureww uu

2.11. The output w(t) in Figure 2.10 is quite different from the output

u(t) in Figure 2.11. Also, the output m(t) in Figure 2.10 is quite

different from the output yo(t) in Figure 2.11.
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The quantity G (f) is computed by the usual formula

G(f) E[W(f)W(f)] (2.66)

where W(f) is given by

W(f) = k I3(f) + 3xX2(f) + 3( 2 +2 )X(f (2.67)

Note that Equation 2.67 reduces to Equation 2.10 when x = 0.

The relationship between U(f) and W(f) is given by

W(f) - U(f) + 3k(2a2 + 2 )X(fi (2.68)

which leads to the autospectral density function

Gw(f) = Guu (f) + 9k 2 (2 2 +1 2 ) 2 Gx
x ( f )  (2.69)

This result extends Equation 2.40 for Vx 0 and occurs

because

G (f)= 0 (2.70)
"''2

G (f) 3oG (f) (2.71)
xx 3  x.xx

Thus, in place of Equation 2.65, one can write
*2 2 2 22 2

Gd(f) IA(f)I2Guu (f) + 9k 2( 2 ax2+ux) IA(f)l 2Gx(f) (2.72)

These two parts of G (f) represent uncorrelated nonlinear
dd

and linear parts of the drag term. Equation 2.72 reduces to

Equation 2.44 when ix a 0.
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Formulas derived in Section 2.4 for lix j 0 have be.en shown
to be extensions of corresponding formulas in Sectlon 2.2 and 2.3
where l1x - 0. In place of Equations 2.45 and 2.46, when

G y ye(f) -H I (f) 1 2 G (f) (2.73)
00x

using H (f) from Equation 2.54, and
0

G (f) = IA(f)1 2 Guu(f) (2.74)

using A(f) from Equation 2.62 and Guu(f) from'Equation 2.60.
The linear coherence function yxy(f) is here

2 Go (f)
Y2 ( f ) = G YOY) (2.75)
XY G (f)

yy

using the Gyoy o (f) from Equatio.n 2.73, and the nonlinear

coherence function q2 () i5

q. .) G~u v (f)
2 (f) Gyty (f (2.76)
qxY G (f)M

using the Gyuyu(f) from Equation '2.74. In terms of the
coherence functions from Equations 2.75 and 2.76, the output
noise autospectral density function is now

G (f) - l-Y(f)- (f) G (f) (2.7)
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2.5 RANDOM ERRORS IN ESTIMATES

Referring back to Figure 2.5 and Equations 2.68 through 2.32,

one can view the model in Figure 2.5 as atwo-input system with

uncorrelated inputs as shown in Figure 2.7.In this form, the

random errors to be expected in the computation of certain

critical parameter values are given directly from Reference[l]

In terms of the normalized random error (coefficient of

variation) of an estimate * defined by

E A CIO](2.78)

the random errors for four important parameter values may be

approximated as follows:

(f p2 YXY (f] (2.79)Y

Ti o (2.80)

-T- I-y (

This(f cocl]e See(2.82)
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3. NONLINEAR DRIFT FORCE MODELS

Section 2 details a mathematical procedure to determine

the spectral decomposition of nonlinear drift forces due

to random ocean waves hitting a floating structure such as

a ship. More generally, it shows how to determine the

spectral decomposition of random data passing through

parallel linear and nonlinear systems, where the nonlinear

system involves a square-law envelope detector. Different

linear operations that may be present in the parallel

linear and nonlinear paths can be identified based solely

upo measurements of the input data and total output data.

The input is assumed to be a Gaussian stationary random

process with arbitrary autospectral density function.

Formulas are stated to evaluate statistical errors in

various estimates made from measured data. These formulas

can also be used to design experiments that will achieve

desired statistical errors.
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3.1 FORMULATION OF DRIFT FORCE MODEL

The general problem to be analyzed for slowly varying drift

forces on floating structures is shown in Figure 3.1. A ship is

assumed to be subjected to random ocean waves represented by

the wave elevation input x(t). This produces a force F(t) on

the ship that results in the ship motion output y(t). The

spectral decomposition of y(t)-. is desired that is due to x(t).

Random data analysis techniques from References [3,4] will be

applied to obtain desired results.

Wave elevation input Ship motion output y (t)

x(t)

Figure 3.1 Illustration of drift force problem.

The force F(t) acting on the ship in Figure 3.1 is assumed

to consist of two components:

(1) a linear term that is proportional to x(t),

(2) a nonlinear term that is proportional to the squared enve-

lope signal of .x(t).--. -
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This nonlinear term is called the slowly varying drift force,

References [12-IA]. Thus the force F(t) acting on the ship can

be expressed as

F(t) = k1x(t) + k2u(t) (3.1)

where

x(t) = wave elevation input (3.2)

u(t) = squared envelope signal of x(t) (3.3)

ki k2 = proportionality constants (3.4)

Equation 3.1 can be made to apply to more general situations by

letting k1 and k 2 be functions of frequency. This will be

done in the following development.

The ship motion output y(t) in Figure 3.1 will be represent-

ed by the nonlinear drift force model in Figure 3.2 such that the

total output record

y(t) = yl(t) + Y2 (t) + n(t) (3.5)

where

Yl(t) = linear output due to x(t) (3.6)

Y2 (t) = uncorrelated nonlinear output due to u(t) (3.7)

n(t) = uncorrelated zero mean Gaussian output noise (3.8)

In Figure3.2,the quantities Hl(f) and H2 (f) are frequency

response functions of constant parameter linear systems that

incorporate the constants k and k 2  from Equation 3.1.
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H- 1l(f) Y, (t) )

x(t) y
SSquare-Law

;Envelope H 2 (f)
Detector u (t) Y2 (t)

Figure 3.2 Nonlinear drift force model.

Twc problems will be treated using the model of Figure 3.2.

(1) Spectral Decomposition Problem. Given H1 (f) and H2 (f)

plus measurement of x(t) only, determine the spectral pro-

perties of yl(t) and Y2 (t). If y(t) is measured as

well as x(t), determine also the spectral properties of

n(t).

(2) System Identification Problem. From measurements of

x(t) and y(t), identify the optimum frequency response

functions H1 (f) and H2 (f) to minimize the autospectrum

of n(t).

A similar analysis was previously carried out in Section 2 for the nonlinear

wave force model of Figure 2.4 that represents Figure '2.2. Not 'hat Figure

3.2 is a special case of Figure 1.4 and can be replaced by an eq -alent

two-input/single-output linear model using the inputs x(t) and u(t).
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3.2 BASIC FOR4ULAS FOR NONLINEAR DRIFT FORCE MODEL

In the nonlinear model of Figure 3.2, the linear output term

Yl(t) is due to x(t) passing through a constant parameter

linear system defined by the freauency response function H1 (f).

The function H1 (f) is the Fourier transform of a linear weight-

ing function h1 (T) such that in the time domain

yl(t) = f hl(t)x(t - t)dT (3.9)

and in the frequency domain

yl(f) = Hl(f)X(f) (3.10)

where X(f) and Yl(f) are Fourier transforms of x(t) and

yl(t), respectively. Theoretically,

Hl(f) = O h1 (T)e- j2TrfTdT (3.11)

X(f) O x(t)e2f t dt (3.12)

Y1 (F)= yl(t)e -i2 1Tftdt (3.13)

It is assumed here and in following formulas that mean values are

always removed prior to computing Fourier transforms.

ihe nonlinear output term Y2 (t) in Figure 3.2. is due to xc(t)

passing through a square-law envelope detector to produce u(t),

followed by u(t) passing through a constant parameter linear

system described by a frequency response function H2 (f). The
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functic.n H2 (f) is the Fourier transform of a linear weighting

function h2 (T) where, in general, h2 (t) 7 h1 (T) and

E2 (f) 3 Hl(f). In the time domain

I0
Y2 (t) = J h2 (T)u(t - -r)dT (3.14)

and in the frequency domain

Y2 (f) = H2 (f)U(f) (3.15)

where U(f) and Y2 (f) are Fourier transforms of u(t) and

Y2 (t), respectively. Theoretically,

H2(f ) = h2(T)e j2 f-dT (3.16)

U(f) = u( t)e- 2dtdt (317)

Y2(f) = fi: y2 (t) e- 2nf t dt (3.18)

As proved in Reference [3], the output u(t) of the square-

law envelope detector is given by

u(t) = x (t) + 12(t) (319)

where

(t) = Hilbert transform of x(t) (3.20)

When x(t) has a zero mean value, then "(t) will also have a

zero mean value. However, the mean value of u(t) , denoted by

E[u(t)], is
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u = E[u(t)] = 2(3.21)

from Equation 3.19 and the fact that

E[x2 (t)] = E[ 2(t)j] = 2 (3.22)

As usual, the notation E[ J denotes the expected value of the

quantity inside the brackets. The Fourier transform of (t),

denoted by X(f), is

X(f) = _ x(t)e- fdt (3.23)

Now, Fourier transforms of both sides of Equation 3.19 yield

U(f) = J [X(a)X(f - a) + X(a)X(f - a)]da (3.24)

Reference [31 also proves that

X(f) B(f)X(f) (3.25)

where

I- f > 0
B(f) = -jsgnf = 0 f = 0 (3.26)

f < 0

Hence

U(f) = f.C [1 + B(o;)B(f - a)]X(a)X(f - a)da (3.27)

and Equation 3.15 becomes
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Y2(f) = H2 (f) f 1 + B(a)B(f - a)]X(a)X(f - a)da (3.28)

Equations 3.10 and 3.28 show how to compute Y1 (f) and Y2 (f)

from knowledge of X(f), H1 (f) and H2 (f). Equations 3.2h to

3.27 show how to compute X(f) and U(f) from knowledge of

X(f).

The factor B(a)B(f - a) in Equations 3.27 and 3.28 can be

determined as follows. From Equation 3.26, the quantity

(-j a > 0

B(a) = 0 a = 0 (3.29)

ji a"< 0

At appropriate plot for B(a) is

B(a)

0

-j

From Equation 3.26, the quantity

- f

B(f - P) = a = f (3.30)

L > f
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Hence, for any f > 0, an appropriate plot for B(f - a) is

B(f -a)

f

-j

i.hile for any f < 0, an appropriate plot is

B(f -a)

-j

Thus, for any f > 0, the product

1 a < 0
B(a)B(f - a) = -i 0 < a < f (3.31)

1 a > f

while for any f < 0, the product
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B (a) 11(f -a j2.f < a < 0 (3.32)

a> 0

At values of a = 0 and a =f, note that

B(a)B(f - a) = B(O)B(f) = 0 (3.33)

Before applying these formulas, a brief discussion will be given

on previous drift force models.
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3.3 PREVIOUS DRIFT FORCE MODELS

Previous drift force models, such as those assumed in

References (12-143 are considerably more complicated be-

cause of employing a bilinear (quadratic) weighting function

h2(rl, 2 ) and bilinear (quadratic) frequency response

H2 (f,g) function to represent the nonlinear path. Specifically,

Figure3.2 is extended to a more general Figure 3.3 where yl(t) is

the same but Y2 (t) is replaced in the time domain by

Y2 (t) = i _' h 2 (Tl't 2 )x(t - T1 )x(t - T2 )dT1dT 2  (334)

and in the frequency domain by

Y2 (f) = fH 2 (a,f - a)X(a))X(f - a) daL (3.35)

Here, X(f) and Y2 (f) are Fourier transforms of x(t) and

Y2 (t), respectively, while the bilinear frequency response

function H2 (f,g) is the double Fourier transform of the bilinear

weighting function h2 (?i'r2 ), namely,

H2 (fg) = h 2 (T I T 2 )e 1 + dT1dT2  (3.36)

This bilineat frequency response function H 2 (f,g) in two

frequency variables f and g is much more difficult to compute

and interpret than the alternative H2 (f) in Figure 3.2. Mathematical

developments of bilinear functions are contained in References [1,2]. Some books

that discuss these matters are References (i,15,16].
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Yl(t) n(t)

x(t)- 7L y(t)

H 2 (f,g)
Y(t)

Figure 3.3 Parallel linear and bilinear systems.

Comparison of Equation 3.35 for Y 2 (f) in Figure 3.3 with

Equation 3.28 for Y2 (f) in Figure 3.2 shows that the same Y 2 (f)

will occur if

H2 (a,f - a) = H2 (f)[1 + B(a)B(f - a)] (3.37)

Thus, knowledge of the linear frequency response function H2 (f)

in Figure 3.2 can yield an equivalent bilinear frequency response

H2 (a,f - a) for Figure 3.3. However, knowledge of the bilinear

frequency response function H 2(ca,f - a) will not yield an

equivalent linear frequency response function H2 (f) for Figure 3.2

To explain this matter, note from Equations 3.31 and 3.32

that the function (1 + B(ca)B(f - a)] will be zero for

0 < a < f when f > 0, and will be zero for f < a < 0 *hen

f < 0. For these values of a and f, one cannot solve

Equation 3.37 for H2 (f) to satisfy an arbitrary

H2(ca,f - a) # 0. Even when the factor rl + B(a)B(f - a)] # 0,

from Equation 3.37, H2 (f) must satisfy
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H2 ( ,f -(, )
H2 (f) = _______ __ (3.38)

[1 + B(c)B(f - c()]

This requires the right-hand side to be independent of 0, a

situation that is highly unlikely to occur in practice for an

arbitrary H2 (ci,f - a). The conclusion is that-one cannot use

past results about H2(ci,f - a) to determine an equivalent

H2 (f) for Figure 3.2. Instead, future work should be based on

new results obtained by following the procedures described in

this report.

-71-



3.l SPECTRAL DECOMPOSITION PROBLEM

For Figure 3.2, the Fourier transform of Equation 3.5 proves

that

Y(f) = Y1 (f) + Y2(f) + N(f) (3.39)

where

Y1 (f) = Hl(f)X(f) (3.40)

Y2 (f) = H2 (f)U(f) (3.41)

N(f) = Fourier transform of n(t) (3.42)

Equation 3.39 will be used henceforth in place of Equation 3.5

and all further analysis will be done with frequency domain

quantities.

As derived and illustrated in References [3,41, from knowledge

of X(f) and -Y(f) for anumber of different stationary random records of

length T , their one-sided (f 5 0) autospectral and cross-

spectral density functions can be computed by the direct form-

ulas

Sxx(f) = ! EX (f)X(f) ] (3.h3)
2x T

G (f) = 2E[Y (f)Y(f)] (3.44)

yy E

Gxy(f) = E[X (f)Y(f)] (3.45)

This procedure does not require the computation of any associated

autocorrelation or cross-correlation functions.
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From Equations 3.39 to 3.h2, the total output autospectral

density function is given by the formula

G yy(f) = G Yl(f) + G y2Y2(f) + G nn(f) (3.h6)

where

G ylY(f) = IH1 (f) G xx(f) (3.47)

Gy2Y2(f) = IH2 (f)I 2 Guu(f) (3.4A)

Gnn(f) = autospectrum of n(t) (3.h9)

The cross-spectral density function between yl(t) and Y2 (t),

namely,

GyY 2 (f) = Hl(f)H2 (f)Gxu (f) = 0 (3.50)

because x(t) being Gaussian makes

G xu(f) = 0 (3.51)

Also, assumptions about n(t) make

G yln(f) =G y2n(f) = 0 (3.52)

The spectral quantity G u(f) 'in Equation, 3.h8 can be'computeduu

knowledge of U(f) for a number of different stationary random

records of length T by the direct formula
2 *

G (f) = 2 E[U (f)U(f)] (3.53)uU T

Since U(f) is known from X(f), Equation 3.53 actually shows that

Guu(f) is a function of X(f).
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A useful theoretical formula is derived in Section 3.8.1 to

compute G uu(f) from knowledge of the input autospectral density

function G xx(f). For any f > 0, the formula is

f00f
G uu(f) = 4 Gxx(a)G xx(f + ±)da + 4 f Gxx () Gx (a- f)da (3.54)

Another theoretical formula is derived in Section 3.8.2 that shows

how to compute G uy(f) from knowledge of the input/output cross-

bispectrum Gxxy (f,g) where

Gxxy(f,g) = E[X (f)X (g)Y(f + g)] (3.55)

For any f > 0, this formula is

Guy(f) = 2fG (-a,f+)dc +2 Gxxy(a,f-a) da (3.56)

Equation 3.54 is applicable to both the spectral decomposition

problem and the system identification problem, while Equation 3.56

is applicable only to the system identification problem.

The spectral decomposition problem has now been solved.

From measurement only of x(t), one can compute Gxx (f) and

Guu(f). Then from knowledge of HI(f) and H2 (f), one can

compute the linear part of the output autospectrum G ylYl(f) due

to the wave elevation force by Equation 3.47 , and the nonlinear

part of the output autospectrum G y2Y2(f) due to the nonlinear

drift force by Equation 3.48.

-74-



If y(t) is measured as well as x(t), then one can

compute G (f). It is now possible to obtain the output noiseyy

autospectrum G nn(f) from Equation 3.46 by the formula

G nn(f) = G yy(f) - G ylY(f) - G y2Y2(f) (3.57)

Note also that if G nn(f) is zero, then G yy(f) can be predicted

without measuring y(t) by the formula

Gyy(f) = G yly(f) + G y2y 2 (f) (3.58)

Coherence functions are required to evaluate statistical

errors in estimates to be given in Section 3.7. The linear coher-

ence function y" (f) between the input x(t) and the totalxy

output y(t) is defined by

Y2  IG xy (f)1 2  GylYl (f)

XY Gxx (f)Gyy (f) Gyy (f)

Thi.s gives the percentage of the total output autospectrum due

to the linear operations on x(t). A nonlinear coherence function

q 2(f) can be defined here by

Gyy (f)

2 (f) G2 2 (3.60)qy (f)
XY ~G yy(f)Gyy

This gives the percentage of the total output autospectrum due

to the nonlinear operations on x(t). In terms of these two

coherence functions, the output noise autospectrum of Equation

3.57 becomes
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G Li 2 (f) - q 2(f)G (f) (3.61)Gn ~f = 1 xy~f yf y

Figure 3.2 will be a good nonlinear drift force model at those

frequencies where Gnn (f) is close to zero, namely, where the

sum [y y(f) + c 2(f)] is close to unity. Otherwise, Figure 3.2

is a poor model.
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3.5 SYSTEM IDENTIFICATION PROBLEM

Assume now that the system properties of H1 (f) and H 2 (f)

are not known in Figure 3.2. Optimum properties are to be identified

from measurements of x(t) and y(t) based upon minimizing the

autospectrum G nn(f) of n(t) over all possible choices of

linear systems to predict y(t) from x(t). It is assumed as

before that x(t) follows a Gaussian distribution with zero

mean value. Nonzero mean -value inputs are treated in Section 3.6.

In Figure 3. 2 , from Equations 3.39 to 3.42, the basic Fourier

transform relation is

Y(f) = H1 (f)X(f) + H2 (f)U(f) + N(f) (3.62)

where X(f), U(f) and Y(f) can be calculated from the given

x(t) and y(t). From Equation 3.62, the cross-spectral density

function Gxy (f) between x(t) and y(t) satisfies

Gxy (f) = Hl(f)G xx(f) (Z 63)

provided that

G xu(f) = 0 (3.64)

G xn(f) = 0 (3.65)
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Equation 3.64 occurs because x(t) and u(t) will be uncorre-

lated when x(t) is Gaussian data. Equation 3.65 occurs by

assuming x(t) and n(t) are uncorrelated.

From References [3,4], the optimum linear system H (f)o

between x(t) and y(t) is given by the formula

G (f)
H (f) G xy (3.66)
0 G (f)

For Figure 3.2,from Equation 3.63,

G (f) - l(f)
Hf (f (f) _ I H(f) jle (3.67)G x (f)

Thus H1 (f) is the same here as the optimum linear system

H (f) that produces the minimum G nn(f) at all f over all

possible linear systems. The optimum system automatically makes

n(t) uncorrelated with x(t) so that Equation 3.65 applies

without the necessity to assume in advance that x(t) and n(t)

will be uncorrelated. Equation 3.67 shows that the complete Hl(f)

in both gain and phase can be identified using only x(t) and

y(t).

From Equation 3.62, the cross-spectral density function

G uy(f) between u(t) and y(t) satisfies

Guy (f) = H2 (f)Guu(f) (3.6 )

provided

G I = 0 (3.69)ux

G un(f) = 0 (3.70)
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These two results follow from Equations 3.64 and 3.65. They also

occur because x(t) and u(t) will be uncorrelated when x(t)

is Gaussian data, and because n(t) and u(t) will be automati-

cally uncorrelated when H1 (f) satisfies Equation 3.67. For

Figure3.2, from Equation 3.68 ,

Guy (f) -J 2 (f)

H 2 (f) = G-_(f_ IH 2 (f) (e (3.71)
Guu (f)

In practice, G uu(f) can be computed directly by Equation 3.53

and G uy(f) can be computed directly by

2 *Guy(f )  if E[U (f)Y(f)] (372)

Since u(t) is known from x(t), Equations 3.53, 3.71 and 3.72 show

that the complete H2 (f) in both gain and phase can be identified

using only x(t) and y(t). Alternate theoretical ways to

compute Guu (f) and G uy(f) are given in Equations 3.54 and 3.56,

bused upon derivations in Sections 3.8.1 and 3.8.2. A different new
theoretical way to identify H2 (f) is derived in Section 3.8.3

After H 1 (f) and H 2 (f) have been computed by Equations 3.67

and 3.71, respectively, the spectral decomposition problem can then

be solved using Equations 3.47 , 3.h , and 3.57. To evaluate

statistical errors in estimates, one should also compute the linear
2

coherence function yxy (f) by Equation 3.59 and the nonlinear co-
2

herence function q 2(f) by Equation 3.60.

-79-



3.6 NONZERO MEAN VALUE INPUT

Suppose that the Gaussian input x(t) has a nonzero mean value given by

U = E[x(t)] # 0 (3.73)

Then x(t) can be expressed as

x(t) = tx(t) - Px] + Vx (374

consisting of a variable input term [x(t) - vx] with zero mean value, plus

a constant term x . Here (t), the Hilbert transform of x(t), will

still have a zero mean value since

1 = E[5(t)] = B(0) x  0 (T.75

and B(0) = 0 from Equation 3.26. In place of Equation 3.19, the output of

the square-law envelope detector is now given by w(t) where w(t) is

2 2
w(t) = {[x(t) - PX] + 1x1 + (t)

= [x(t) - U ] + X2(t) + 2[1 X(t) -x + ux

= u(t) + 21x(t) - jx + 2 (3.76)
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2
The last term Px produces an effect in the spectrum of w(t) only at

f = 0. For f $ 0, Equation 3.76 consists of a nonlinear square-law enve-

lope detector in parallel with a linear operation 2v x  as shown in Figure 3.4.

Note that Figure 3.4 simplifies to the square-law envelope detector by itself

when .ix = 0.

[x(t) - w(t)

Square-Law
Envelope
Detector u(t)

Figure 3.4 Nonlinear system when lix # 0.

Return now to the original problem covered by Figure 3.2. For situations

where the input changes to [x(t) - I] with vix # 0 , Figure 3.2 becomes

the new extended Figure 3.5. In Figure 3.5, the two outputs yl(t) and Y3(t)

will be correlated because of the linear operation in the nonlinear path.
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H 1( f )  
n (t)

YlnIt)

[x(t) - (tt

Envelope J-

3.5 Nonlinear drift force model when ux  0.

The optimum linear system H (f) in Figure 3.5 is computed as before by0

the equation

H 0(f) G Gxy(f) - H 1 (f) + 2 "H 2 (f) (3.77)
G (f)

Note that H (f) is now a function of both H1 (f) and H2 (f). Figure 3.50

should now be revised so that H1 (f) is replaced by H (f) to produce a0

new output Y4(t) in place of yl(t). The output y3(t) in Figure 3.5 will

then become the previous output Y2(t) in Figure 3.2 and will preserve the

Sim

yl(t) + Y3 (t) = y4(t) + Y2 (t) (3.78)
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This will give Figure 3.6 where the two outputs y4 (t) and Y2 (t) will be

uncorrelated because of the properties of H (f) and the Gaussian nature of
o

the input [x(t) x1.

Y4(t)

[x(t) - x]  (39y(t)

4xFigure 3.6 Equivalent model to Figure 3.5.

The following Fourier transform relations are satisfied by the quantities

shown in Figure 3.5 and 3.6. Various applications are feasible depending upon

what is known and what can be measured.

x(f) = J,[x(t) - x]  (3.79)

U(f) = I[u(t) - Pu]  3.80)

W(f) = I[w(t) - w] 3.81)

Y(f) - '[y(t) - "Y] (3.82)

Also, for f $ 0,

w(f) = u(n + 2Ijx X(f) (3.83
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Yl(f) = T[yi(t) Uyl] = Hl(f)X(f) (3.8k)

Y2 (f) = -y2(f) Y2] = H2 (f)U(f) (3.85)

Y3 (f) = X[Y3 (t) - y3] = H2(f)W(f )  (3.86)

Y4 (f) = r[Y4 (t) - Py 4 = H0 (f)X(f) (3.87)

where H (f) is given by Equation 3.77. The output term0

Y(f) = Y4 (f) + Y2 (f) + N(f) (3.88)

From Equation 3.84 the output autospectral density function is

Gyy(f) = Gy4Y4(f) + Gy2y(f) + Gn (f) (3.89)

where

Gy4y 4 (f) = IH0 (f)i 2Gxx (f) (3.90)

Gy22 (f) = IH2(f)12Guu(f) (3.91)

Gnn(f) = autospectrum of unmeasured
extraneous output noise

From knowledge of H1(f), H2(f) and x(t), one can compute Ho(f), Gxx(f)

and Guu(f) so as to be able to predict Y y4Y4(f) and C2Y (f). When

Gnn() = 0, this will predict the total output spectrum Gyy(f).

To identify the optimun system properties of Ho(f), Hl(f) and H2 (f)

from measured input/output data, the appropriate equations to use are

Gxy(f) = Ho(f)Gxx(f) (3.92)

Guy(f) = H2(f)Guu(f) (3.93)
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As in Section 3.5, from -measurements of x(t) and y(t), one can

compute the spectral quantities shown in Equations 3.92 and 3.93 . This

gives

Gxx(f)H o(f) = -.-- ( 3.94 )
G (f)

G (f)
H2 (f) = Guy... (3.95)

Guu(f)

Then, from Equation 3.77

HI (f) = HoIf) - 2ixH (3.96)

Other spectral relations of possible interest for special applications

when jx 0 are

G Yl(f) = IH1(f) 12 Gx(f' (3.97)

y3y3(f) = IH2 (f) 2 Gww(f) (3.98)

=2~f Gxxjf) (3.99)Gww(f) = Guu(:f) + 4V f)( -9

Gly3 (f) " 21jxHI (f)H 2 (f)Gxx (f) (3.100)

2 4 ()=0 (3.101)
Yy4

This completes the analysis for nonzero mean value inputs.
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3.7 STATISTICAL ERRORS IN ESTIMATES

Return back to Figure3.2and the equations in Sections 3.4

and 3.5. For this error analysis, replace Figure 3.2 by a two-input/

single-output linear model with unoorrelated inputs x(t) and u(t) as shown

in Figure 3.7.

x(t) H- Hl(f) l n(t)

ty(t)

u (t) H H2(f) !>Y(t

Y2(t)

Figure 3.7 Two-input/single-output linear mode.
for Figure 3.2.

Statistical random error formulas will now be stated for
estimates of the following six quantities. These formulas are

derived in Reference [3] and summarized in Reference [4].

(1) YYl (f) computed by Equation 3.47

(2) y2y(f) computed by Equation 3.48

( 2(f) computed by Equation 3.59
^2

(4) q xy(f) computed by Equation 3.60

(5) l(f) computed by Equation 3.67

(6) H2 (f) computed by Equation 3.71
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The normalized random errors for the two output spectra

estimates G (f) and G (f) are approximated by

[ ^2 1/2[- Yxy(f)]l/

E[G (f)] (3.102)

xy d

[2 2 (f)] ]1/2
- qxy[GMfM2 ( f ) ] -- (3.103)

I q.xy(f) In- 1

where nd is the number of independent averages used to compute

the original spectral density quantities. Required values of

nd  to achieve desired values of c[Gyy (f)] or C[Gyy (f)]

are obtained by solving Equations (73) and (74) for nd.

The normalized random errors for the two coherence function

estimates xy (f) and Cxy (f) are approximated by

1 -2 (f)] Z (f)] (3.104)
xy

^xy d
y/' 'q - 2 (f)]2y f ] xy -(3.105)

qxy (f) d -n - 1

Bias errors for these estimates are

2 2

b[Yxy (f)] [ - Y(f)] (3.106)

d
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- 2 2q, (f)]
b[q y(f) ] Y (3.107)

These bias errors are over and above the random errors.

Normalized random errors for the frequency response function

estimates Hl(f) and H2 (f) are required for both gain factor

estimates and phase factor estimates. For gain factor estimates

!Hl(f) and jh2 (f) , the normalized random errors are approxi-

mated by

[1 - x2y(ff]1/ 2

Yxy (3.108F[ Hl1(f )  ] ~., (3.108)

l~xy~f d

[i- 2yf ]/2

[IH2 (f) 1 q (3.109)
I qx(f)I./2(nd-i)

The standard deviations (in radians) of the two associated phase

factor estimates *1 (f) and $2 (f) (in radians) are approxi-

mated by

[ sin -  H(1 (f)Il] (3.110)

1[12(f) I sin-' {E g[H 2 (f)11} (3.111)

For small values of E4IH 1 1 and e[1H 2 1] , Equations 3.110 and

3.111 can be further simplified to
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o[if]=E[ fi (3.n12)

2(f)] [ 2 (f) ] (3.13)

Various bias error in frequency response function estimates are

discussed also in Reference [3] that should be minimized as

much as possible in practice.

3.8 DERIVATIONS OF THEORETICAL FORULAS

To make this report more self-contained, some special theoretical

formulas are derived here that supplement material discussed in earlier sections.

These formulas deal with quantities G (f), G (f) and H 2(f) that are involveduu uy2

in the nonlinear drift force models of Figures 3.2 and 3.6. Readers not interested

in these matters should proceed to Section h.
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3.8.1 Theoretical Formula for G U(f)

A useful theoretical formula will now be derived to

determine G uu(f) from knowledge of Gxx (f). From Equation 3.24,

U(f) = [X(a)X(f - a) + X(ct)X(f -c)]da (3.114)

If*(f) = [X (S)X (f-) +X (a)X (f -)]da (3.115)

The two-sided autospectral den{ity function Suu(f) of u(t)

is defined by

uu (f) _ 1 E[U*(f)tI(f)]

T f fE[tX*( )X (f-a) x (B)x (f-a))(X(a)X(f-a)

+ X(P)X(f- ) Idado (3.116)

In Equation 3.116 the integrand involves a total of four different

fourth-order moments of Gaussian data that breaks down into

products of pairs of second-order moments. A typical fourth-

order moment can be replaced by the three product pairs

E[X () X (f - ) X()X(f - )] =E[X () X (f - ) ]E[X() X(f -a)]

(3.117)

+ E[X ( )X(a) ]E[X (f - a)X(f - a)] + E[X (B)X(f - a)]E[X(f -)X(a)
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The first pair of second-order narents in Equation 3,117 are given by

E[X (B)X (f - 5)) = Sxx(8)l(f) (3.118)

E:X.(C)X (f - a)] = Sxx() 61 (f) (3.119)

utnere S (cc) and Sx (5) are two-sided autospectral density functions

of x(t) and where 61 (f) is the finite delta function defined

by

1 (f) = 61 (-f) = T (-1/2T) < f < (l/2T)

(3.120)

= 0 otherwise

f(1/2T)
61 (f)df = 61 (f)df = 1 (3.121)L'C"O"(-1/2T)

The first pair gives a contribution to Suu(f) of Equation 3.116

only at f = 0 since

fW ( 2 = 41(f) (3.122)SJ Sx (a) Sx (S)a1±(f) dctdS 0x61

Here

2- f_ Go
ax = S xx(Wda = Sxx ()dB (3.123)

The second pair of second-order moments in Equation 3.117 are

given by

E[X*($)X(a) ] = S xx(8)l(a -6) (3.12)
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E[X (f - s)X(f -a) = Sx(f - )61 (a - 8) (3.125)

This second pair gives a contribution to S uu(f) of Equation 3.116

represented by

f S ( 2(a (a) S (f -a)da (3.126)xx(8)xxf 8)1 = xx xx

The third-pair of second-order moments in Equation 3.117 are

given by

E[X*( )X(f - a)] = S xx() 61(f - a- (3.127)

E[X*(f - S)X(ct)] = S xx(f-) (l f-M- (3.128)

This third pair gives a contribution to S uu(f) of Equation 3.116

represented by

Sx (a)sxx(f- B)6l(f- -a - )dd = f Sxx(f -a)Sx(a)da (3.129)

Equation 3.129 is exactly the same as Equation 3.126.

Equations 3.117 to 3.129 prove for f 0 0 that
0

f JJ fE[X (6)X (f-a)X(a)X(f-a)]dad o=2 Sx(a-Sx(f-a)d (3.130)

Similarly, one can prove for f 0 that the other fourth-order

moments in Equation 3.116 lead to the results

_. (B)*(f - a)X)X f-)dda= 2 Sxx(W)Sxx(f-a)d (3.131)CO f_*- f_ COx
E[X*(B)X*(f - 8)X(e)X(f -)]dda = 2 f ) (f -a) d (3.132)

-92-



_ E[X (a)X (f X(a)X(f-a)]dada=2 Sxx(a)Sxx(f-c) d (3.133)

The derivation of Equations 3.131 to 3.133 requires formulas

from Table 13.2 of Reference [2]. In particular

S (a) = S.. (a) = -S_ (cc) (3.134)
xx xx xx

where S (a) is the Fourier transform of Ru r (T) , and R R (T)
xxx

is the Hilbert transform of the autocorrelat ion function R x (T).

Hence

S xx(a) = B()Sxx (a) (3.135)

where B(a) satisfies Equation 3.29.

Substitution of Equation 3.117 into Equation 3.116 followed by

substitutions from Equations 3.130 to 3.133 now proves the theore-

tical formulas that for any f # 0

S (f) = 4 [S WSf)S (f-a)+ Sx (a)S (f-a) ]da (.136)uu f00 xx xx xx Sxx

S U(f) = 4 fC (1 + B(a) B(f -a) ]S (a)WS x(f -a) da (3.137)

These formulas show how to compute S uu(f) from knowledge of

Sxx M

The one-sided autospectral density functions G uu(f) and

Gxx(f) are related to the two-sided autospectral density functions

Suu (f) and Sxx (f) by

}2Suu(f) f > 0
G uu(f) = uu (3.138)0 f < 0
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I 2S xx(f) f > 0G f = 0- (3.139)
xx0 f < 0

Also

S (f) = S (-f) G (f)

uu uU uu(31o

S (f) = (-f) = (f) (3.1 )

Consider any value of f > 0 and apply Equation 3.31 to

Equation 3.137. Now

0
Suu(f) = 8 Sxx(a)Sxx(f - a)da + 8 Sxx(a)Sxx(f - )d (3.142)

f

This is the same as

fC

Suu(f) = 8 J Sxx(-)Sxx(f + 8)d + 8 SxxcW)Sxx(f- a)da (3.143)

by letting 8 = -a and d8 = -da . Replacing 8 by a again

and using the fact that Sxx (-a) = S x(a), SX (f-a) = S x(-f),

Suu(f) = 8 fo Sxx(W)Sxx(f +a)da+ 8 f Sxx Sxx(a- f)da (3.144)

For any f > 0 , one now has the equivalent formula in terms of

one-sided autospectral density functions

Guu(f) = 4fo Gxx( )Gxx(f+)da+4ff G(xx W)Gxx(a- f)da (3.145)

Equation 3.145 shows how to compute Guu (f) from knowledge of

Gxx (f).
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3.8.2 Theoretical Formula for G (f)uy

Another theoretical formula of interest is the cross-spectral

density function between u(t) and y(t). The two-sided cross-

spectral density function S uy(f) is defined by

uy uySu (f T[U(f)X(f) ] (3.1h6)

where U(f) and Y(f) satisfy Equations 3.27 and 3.39, respectively.

Hence

S_ * * *

S f 1 [1 + B (a)B (f-a)]E[X (a)X (f-x)Y(f)]dcc (3.17)uy T 

For all values of a and f, one can verify that the product

quantity

B *(a)B (f- a) = B(a)B(f- a) (3148)

The two-sided cross-bispectrum (also called the second-order

cross-spectral density function) between x(t) and y(t) is

defined for all possible f and g by the two-dimensional func-

tion

1 E[*

S (f,g) = E[X (f)X (g)Y(f+g)] (3.1h9)
xxyT

As a special case, when f =o. and g = (f - OC), one can compute

1 * *

S ( ,f-a) = T E[X (a)X (f-a)Y(f)] (3.150)
xxyT

This result will not be zero for the Y(f) of Equation 3.39.

Substitution of Equations 3.1h8 and 3.150 into Equation 3.147

yields the formula
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Oii

Sui.(f) = f [1 + B(a)B(f -cc)]Sxxy(a,f - a)da (3.151)

This formula shows how to compute Suy (f) from knowledge of

S (a,f - 0) .xxy

The one-sided cross-spectral density function G uy(f) is

related to the twc-sided cross-spectral density function S uy(f) by

2s (if) f D

Guy( (f= S - (3.152)0 f <0

Define the one-sided cross-bispectrum G xxy(,f -) by
Sxx~a~f- s) xxy

Gxxy(a, f- a) fs xY(a, fc-) f 0 (3.153)
0 f< 0

Now, for any f > 0 , Equation 3.151 becomes

Guy(f) = J Ci + B (a)B(f - a)] Gxxy(af -a)da (3.154)

Applying Equation 3.31 to Equation 3.154 yields

GuY(f) = 2 Gxxy(a, f-a)dI-.2 ffGxxy(af-a)da (3.155)

Al so

Guy(f) = 2 Gxxy(-a, f+a)da + 2 f Gxxy(af-a)da (3.156)

The cross-bispectrum functions in Equations 3.155 and 3.156 can

be determined for any f > 0 by the computations
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22 *
G (-C,f+a) = E[X (-)X(f+C)Y(f) = EXc)X f+c)Y (f)]xxyT

(3.157)

Gx(a, f-cc) = 2 E[X (a) X (f-a)Y(f)] 2 E[X (c)X( f)Y(f]

(3.158)

Equations 3.154 to 3.158 show appropriate ways to compute G uy(f)

from knowledge of G (a,f- a).xxy
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3.8.3 Identification of H2 f)

A different new theoretical way to identify H2 (f) is

also possible from measured x(t) and y(t) by using

Equation 3.68 together with h quations 3.137 and 3.151. In

terms of two-sided spectral density functions, Equation 3.68 is

S uy(f) = H2 (f)S uu(f) (3.159)

Substitution from Equation 3.137 now gives

S (f) = 4H2(f) [1 + B(ct)B(f- a)]S (a)S (f - ct)dcc (3.160)
uy 2 COOxx xx

However, Equation 3.151 states that

S(f) I + B (a) B(f - O)1ISxxy (a, f-ca) da (3.161)

Hence, one obtains the useful relation

Sxxy(a,f -a) = 4H 2 (f)Sxx(a)Sxx(f-a) (3.162)

This provides an alternate way to estimate H2 (f) from computa-

tion of the other quantities. Consider a change in variables

where a = g and f = 2g. Then (f -a) = g and Equation 3.162

becomes

S (gg) = 4H2 (2g)S 2  (g) (3.163)
xxy 2 xx

This is the same as
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Sx('f) = 4H2 (2f)S 2 (f) (3.164)

Tnus H2 (2f) satisfies here the simple relation

S (f,f)

H2 (2f) = xxy' (3.165)4S / (f)
xx

where

Sx (f) E[X*(f)X(f)] (3.166)

Sxxy(f,f) - E[X*(f)X*(f)Y(2f)] (3.167)

with Y(2f) -given by Equation Finally, Equation

proves that

H2 (f) Sxxy (f / 2 f/ 2 ) 168)

4 S 2(f/2)

This concludes Section 3.
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4. NONLINEAR NONSYMMETRICAL SYSTEMS

Section 4 develops various input/output relationships when

random data passes through three types of nonlinear

nonsymmetrical systems: (A) Three-Slope Systems, (B)

Catenary Systems and (C) Smooth-Limiter Systems. Included

are formulas for input/output probability density

functions, correlation functions and spectral density

functions. These particular nonlinear nonsymmetrical

systems are of interest for NCEL applications. Spectral

formulas are stated here using two-sided spectral density

functions.
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~.1 THREE-SLOPE SYSTEMS

A first example of a nonlinear nonsymmetrical system is a

three-slope system as sketched in Figure 4.1. Let

y =g(x) =x -A < x < B

= -A +a(x + A) x < -A (4.1)

=B +b(x -B) x> B

y

B

-A B

Figure 4.1 Three-slope system.



For definiteness, assume here that the constants

0 < A < B, 0 < a < 1, b > 1 (4.2)

The inverse relations are

x = g (y) y -A < y < B

: -A + Ey +A)/a3 y < -A

=B +1(y-B)/b] y>B

The derivative relations are

dy I( )dx -A < x< B

a x < -A (4.4)

=b x > B

Thus the derivative is discontinuous at x = -A and at x = B.

Let p(x) be the input probability density function and

p2 (y) be the output probability density function. For this

problem, from Equation 1.5,

P2 (y )  = p(x) (4.5)

=dy/dxl

where x on the right-hand side should be replaced by its
-i

equivalent y from x = g (y). Thus
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p 2 (y) p(x) = p(y) -A < y < B

_ p(-A + [(Y+A)/a]) < -A (4.6)

a

= p(B +[(y-B)/bl) y > B

b

Assume the input probability density function p(x) is Gaussian

as sketched in Figure h.2 with u x = 0 and x = 1.

p(X)

-A B

Figure h.2 Gaussian input PDF.

Here

p(x) - exp (_x2 /2) (h.7)
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Let

i= p(x)dx = Prob [x < -A] (4.8)

2 c p(x)dx = Prob [X> B]

When A < B, clearly a 1 > L2  Also

Prob[-A < x < B] = p(x)dx = i - a1 - a 2  (4.9)

The quantities a1  and a2 represent for the output record

0% = f-Ap 2 (y)dy = Prob (y < -A] (4.10)

rA2 -B P2 ( y ) d y  = Prob (y > B

Thus

1 - a1 - 2= p 2 (y)dy = Prob [-A < y < B] (4.11)A

Note that for A < B, one has

p(-A) > p(B) (4.12)

Consider now the shape of p2 (y). As y approaches the

value -A from inside, [y > -A]

p2(-A + ) = p(-A) (4.13)

However, as y approaches the value -A from outside, [y < -A],
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p 2 (A-),  _ p(-A)
a

For an assumed a < 1, there results

P2 (-A) > P2 (-A+) (4.15)

The reverse inequality would be true if a > 1.

Similarly, as y approaches the value B from inside,

[y < B],

P 2 (B-) = p(B) (4.16)

while as y approaches the value B from outside [y > B],

P 2 (B+ ) = P I (4.17)

Here, for an assumed b > 1, these results

P2(B + ) < P2(S-) (4.18)

with a reverse inequality if b < 1. This treatment shows that

the shape of p2 (y) under the assumption that 0 < a c j b > 1)

must be as sketched in Figure 4.3. For the assumed values here,

observe that a( > of 2

P2(-A>-0 P2 ( B + )  (4.19)
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P2 (Y)

a 2

,, Y

-A B

Figure 4.3 Output PDF for three-slope system.
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Suppose the three-slope system is hard-limited at x = -A

and at x = B such that

y = g(x) = x -A < x < P

= -A x < -A (4.20)

= B x B

This nonlinear nonsymmetrical system is sketched in Figure 4.4.

- B
-A -A

Figure h.h Hard-limited three-slope system.

As before, assume the input probability density function is

Gaussian with ux = 0 and a. = 1. Now

al = Prob[x < -A] = Prob[y = -A]

(h.2i)

a2 = Prob[x > B] = Prob[y = B]
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This gives the output probability density function

P2 ( y )  P(Y) -A < B

0 c1 (y + A) y = -A (4.22)

a 2 6(y - B) y = B

where 6(y) is the usual delta function. Assuming that

,1 > a2 , the shape of p2 (y) is sketched in Figure 4.5.

P2(Y)

-A 0 B

Figure 4.5 Output PDF for hard-limited three-slope system.
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1.2 CATENARY SYSTEMS

A second example of a nonlinear nonsymmetrical system is a

catenary system as sketched in Figure 4.6. Let

y g(x) = -aA 2  x < -A

= a(x 2 + 2Ax) -A < x < B (4.23)

2
= a(B + 2AB) x > B

y

! X

-AB

Figure 4.6 Catenary system.

For definiteness, as.zume here that the constants

A > B > 0, a > 0 (4.24)
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The inverse relations are

-1
x = g (y) = any value of x < -A

when y = -aA
2

= -A + /A2 + (y/a), -aA2 < y < a(B 2 + 2AS) (4.25)

= any value of x > B

when y = a(B 2 + 2AB)

The middle range is obtained by solving the quadratic equation

x + 2Ax - (y/a) = 0 (4.26)

where only the positive square root operation makes sense. The

derivative relations are

x = gp(x) = 0 x < -A

= 2a(x+A) -A : x < B (4.27)

=0 x>B

Thus, the derivative is discontinuous at x = B.

Let p(x) be the input probability density function and

p2 (y) be the output probability density function. For this

problem, from Equation 1.5,

P2(y ) = p(x) (4.28)
Idy/dxl

only in the range where -A < x < B, and where the value of x

in the right-hand side should be replaced by its equivalent y
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from x =g-1 (y). Thus, for y in the range -aA2 < y < a(B2 + AT))

P2 ( y )  p(x) _ p(-A + VA 2 + (y/a) (4.29)

2alx+AI -2a VA2 + (y/a)

This has the form of a chi-square probability density function

when p(x) is assumed to be Gaussian. Different relations are

required for x <-A and x > B.

Assume the input probability function p(x) is Gaussian

with Vx = 0 and ax = 1 as sketched in Figure 4.7 where

p(x) -1 exp (_x2 /2) (4.30)

p(x)

-A B x

Figure 4.7 Gaussian input PDF.
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The assumed values for A and B are such that A > B > 0. Let

a = p(x)dx = Prob [x < -A]

(4.31)

= p(x)dx = Prob [x > B]

Clearly,

a < (4.32)

Also,

Prob [-A < x < B] = p(x)dx = 1- a - (4.33)

All of the values of x < -A are associated with the single

2
value of y equal to y = -aA2 . Hence the output probability

density function

p2 (y) = a6 (y + aA ) at y = -aA2  (4.34)

where 6(y) is the usual delta function. This gives

Prob y -aA2= a (4.35)

Similarly, all the values of x > B are associated with the

single value of y = a(B2 + 2AB). Hence the output probability

density function
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P 2 (y) = a 6(y - a[B2 + 2AB]) at y = a(B2 + 2AB)

where 6(y) is the usual delta function. This gives

Prob Cy = a(B2 + 2AB)] = a

There is zero probability here that y < -aA 2 or that

v > a(B 2 + 2AB). The probability that y falls inside these

two bounds is

Prob [-aA2 < y < a(A 2 + 2AB)] = 1 - a - a

A typical shape for p2 (y) is sketched in Figure 4.8.

Observe that P2 (y) approaches infinity as y approaches the

ralue -aA 2 from inside [y > -aA 2], but p 2 (y) stays finite

as y approaches the value a(B 2 + 2AB) from inside,

[y < a(B2 + 2AB)].

a
P2 (y)

. y

-aA2  0 a(B 2 + 2AB)

Figure 4.8 Output PDF for catenary system.
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Input/Output Spectrum Relations for Catenary System

In the range from -A < x < B, the catenary output y(t)

is assumed to consist of two components:

(1) a linear term that is proportional to x(t),

2
(2) a nonlinear term that is proportional to x (t).

In terms of constants k and k2 ,

y(t) = k1x(t) + k2x 2(t) (h.39)

This equation can be made to apply to more general situations

as shown in Figure 4 .9by letting the catenary output be represent-

ed by

y(t) = yl(t) + Y2 (t) + n(t) (4.4o)

where

Yl(t) = linear output due to x(t)

Y2 (t) = nonlinear output due to v(t) = x (t)

n(t) = uncorrelated zero mean Gaussian output noise

In Figure h.9 the constant parameter linear system frequency response

functions H1 (f) and H2 (f) incorporate the constants k and

k 2 , respectively. Note that Figure 4.9 is a special case of Figure 1.8

that can be analyzed by formulas in Section 1.5. Figure 4.9 can be replaced

by a two-input/single-output linear model with inputs x(t) and v(t) that will

be uncorrelated when x(t) is Gaussian.
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Hl~~ f) 

Y l tI

x(t) (t)

am quarer 
H2 f

v(t) 
Y2 ( t )

Figure 4.9 Catenary system model.

In the frequency domain, the governing relation of this

catenary system model is

Y(f) = Y1(f) + Y2(f) + N(f) (4.41)

where Y1 (f), Y2(f and N(f) are Fourier transforms of Yl(t),

Y2 (t) and n(t), respectively. In terms of X(f) and V(f),

the Fourier transforms of x(t) and v(t) = x (t),

Y1 (f) = Hl(f)X(f) (4.42)

Y2(f)= H2 (f)V(f) (4.43)

V(f) = f v(t)e-J2 ftdt = X()X(f - a(t). 1)

Note that V(f) can be computed by two different methods, either

directly from v(t) or indirectly from X(f).

For Gaussian input data x(t) as assumed here, the output

terms yl(t) and Y2 (t) will be uncorrelated. Hence, the two-

sided output spectral density function S yy(f) satisfies the

relation
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S yy(f) = S ylYl(f) + S y2Y2(f) + S nn(f) (4.45)

In terms of Sxx (f) and S vv(f), the two-sided spectral density
2

functions of x(t) and v(t) = x (t),

S Y l(f) = Hl(f) I2 Sxx(f) (h.46)

S= 1H 2(f) 12 Svv(f) (h.47)

Sv (f) = E[V (f)V(f)] (4.48)

Also, fe f r 0f

Svv(f) = 2 f Scxx(W)Sxx(f - a)da (h.49)

Note that S vv(f) can be computed by two different methods,

either directly from V(f) or indirectly from S xx M.

Given H1 (f) and H2 (f), plus measurement only of x(t),

the above equations show how to determine the spectral properties

of yl(t) and Y2 (t), namely, S (f) and Sy2Y2 (f). If

y(t) is measured as well as x(t), then one can also determine

the two-sided spectral density function Snn (f) of the unmeasured"

n(t) by the relation

Snn (f) = Syy (f) - Sylyl (f) - Sy2Y2(f) (4.50)

A good model occurs when S (f) is small compared to S (f).nn yy

For situations where H1 (f) and H2 (f) are not known, opti-

mum estimates of their properties can be obtained that minimize

S nn(f) provided one can make simultaneous measurements of x(t)
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and y(t). This system identification problem can be solved using

the relations

S xy(f) = S (f) = Hl(f)Sx (f) (4.51)

Svy(f) = H2 (f)Svv(f) (L.52)

Thus

s (f)
Hl1(f )  _ xy M(4.53)

H 2(f) = y(f (4-5)
S (f)

H2 (f) - (14.51)

Here, S xy(f) is the two-sided cross-spectral density function

between x(t) and y(t), and Svy (f) is the two-sided cross-

spectral density function betw -. v(t) and y(t). These

quantities can be conruted directly by

S f) 1 *S xy (f) - E E[X (f) Y(f)] (4.55)

1. *

S vy(f) = - E[V (f)Y(f)] (4.56)

The quantity S vy(f) can also be computed indirectly by

Svy f = J_ S xxy (a f - a)da  (4.57)

where S xxy(a,f - a) is the two-sided cross-bispectrum (also

called the second-order cross-spectral density function) defined

for all f and g by the two-dimensional function
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Sxy ( f ' g )  =T E[X (f)X (g)Y(f +g)] (458)

The integrand

S (ax,f - a) = [X (a)X (f- ( )Y(f)] (4.59)xxy T

is a special case of Sxxy(f,g) when f = O and g = (f - a).

For f : 0, one can also compute Svy(f) from Equations 4.49

and 4.52 by the relation

SV (f) = 2H2(f) f Sxx (a)Sxx (f - a)da (4.60)

Hence, for f 3 0, the two-sided cross-bispectrum satisfies

S xxy(,f - a) = 2H2 (f)S xxW)S x(f - a) (4.61)

This provides an alternate way to determine H2 (f) from compu-

tation of the other quantities. Consider a change in variables

where a = g and f = 2g. Then (f - a) = g so that one obtains

S (g,g) = 2H 2 (2g)S 2 (g )

) 2(4.62)

Now, replacing g by f gives

Sx(ff) = 2H2 (2f)S 2 (f) (4.63)
xxy 2 xx

Solving for H2 (2f) shows

H2 (2f) = Sy ( f f ) 4)
2S x (f)
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Finally, replacing f by (f/2) proves

S (f/2,f/2) (4.65)H2(f) 2 x (.5
2S2 (f/2)

xx

This concludes the material on system identification and on

input/output spectrum relations for the catenary system.
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4.3 SMOOTH-LIMITER SYSTEMS

Consider the nonlinear nonsymmetric smooth-limiter system

sketched in Figure 4.1O where

y = g = f exp(-t 2/2)dt x > 0 (4.66)

=0 x < 0

Equation 4.66 is the equation for the normal probability integral.

y

Figure 4.10 Smooth-limiter system.

For this nonlinear transformation, special values are

g(0) = 0

g(l) = 0.683

g(2) = 0.954 (4.67)

g(3) = 0.997

g(-) = 1.000
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Tables are available that give g(x) as a function of x, and

that can also be used to find x for any g(x) in range

0 < g(x) < 1.

The inverse relations are

-i
x = g (y) = any value of x < 0 for y = 0

=uniquevalueof x inrange 0 <x<- for 0< y< 1

=no value of x for y < 0 or for y > 1

The derivative relations are

= g (x) = l exp(x 2/2) x > 0

(4.68)
=0 x< 0

Here the derivative is discontinuous at x = 0.

Assume that p(x), the input probability density function,

is Gaussian with mean zero and standard deviation a where

p(x) - exp(-x 2/2a ) (4.69)

All of the values of x < 0 are associated with the single value

of y = 0. Hence p2 (y), the output probability density func-

tion, is such that

1

P2 (y) = . 5(y) at y = 0 (4.70)

where the factor (1/2) occurs because the probability is (1/2) that x t 0.

There are no values of x where y <0 or y > 1. Hence

p2 (y) = 0 for y < 0 or y > 1 (4.71)
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In the range where 0 < y < 1 , from Equation 1.5, the result is

P2(y) p(x) p(x) (4-72)
2 jdy/dx exp(-x 2/2)

where the value of x on the right-hand side should be replaced
-l

by its equivalent y from x = g (y). As y approaches the

value 0 from the inside where y > 0 , the value of x also

approaches zero so that

+ p r(0) (-3P 2 (o) = A [i
1 1- -

As y approaches the value 1 from the inside where y < 1, the value of

x approaches infinity so that

p2 (l)= (4.74)

A typical shape for p2 (y) is sketched in Figure h.11.
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1/2

P2 (y) I

1/2ar

iy

0 1

Figure 4.11 Output PDF for smooth-limiter system.

It is of interest to be able to determine the output auto-

correlation function and the input/output cross-correlation func-

tion for Gaussian input data through this smooth-limiter system.

Such formulas can be found using Price's Theorem of Equation 1.6

and Bussgang's Theorem of Equation 1.7.
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Output Autocorrelation FuVqtion for Smooth-Limiter System

By Price's Theorem, the output autocorrelation function

R yy(T) and input autocorrelation R xx(T) for Gaussian input

data satisfies the equation

R (
DR = E[g (x1 )g (x 2)] (4.75)

f gf(xl)g(x2)P(XlX2

where

x = x(t) Yl = y(t)

(4.76)

x 2 = x(t + T) Y2 = y(t + T)

The correlation functions

RXX(-) = E[x 1 x 2] Ryy(T) = E[yly 2 ] (4.7.7)

Derivative values from Equation 4.68 are

g (x I ) = Vq exp(-xl/2) for x > 0, otherwise zero

(4.78)exp 2
g (x2 ) = 4 exp(_x 2 /2) for x > 0, otherwise zero

The joint probability density function(x2+ x+ 2_p~
p(x1 1 x2 ) = -1 exp 1  2 2  (4.79)

P2)2 2a2(1 2

-124-



Thus

3R (T) 1 2 2 (x2 +
____ -f exp [;2;2 2X 1 X 2 ), '1 2'2 - 1 d-2R xx(T) T202p 2 2 ) 2 3

(4.8o)

The bracketed quantity co"l2tfI

(x 2 + X 2  xx + 2 ) (2 + 2) [1+ G 2 o212

1_2_-_____1___2) 1 2 *1 2)[+ (1- 2]-

2+

2a 2(1 2) 2o 2 (1 - p2

2 2 pxlx2/[ 1 + O2(1 _ 02x I + x x
1 x 2 1x 2/11 + (1

2 2 ( - p2 )/[1 + 02(l - ) 2

2 + 2pxx 2 x

1 2  0 o 2 1 + -2 o 1X2 (4.81)

2a2 (1- p 2 )/[1+ a2 (1 - p 2) ] 22(1 - 02
0 0

where p0  and a2 are defined by

po = with p = p (T) R xx (4.82)i + 2 (1 a 2

= (1 _ P2)/[ + a2 (1 p2 ) a 2 ( 2 )(p/)

2 2 o(0 a 2 (14.83)
00
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By these substitutions,

'R 2 21- 1f exp -(x 1 +X- 2p0 x 1x 2  dx 2 d(4.84)

R (T) 2 2,2o _o202 (1 - 2 o

The integral is now in the form of a joint Gaussian probability

density function over one quadrant where

ff 1 exp 1 1- dxldx 2  (.85)

0 2 ~V1--P L2 2 I

Hence

-1 (U.86)
DRxx (T) 0 02 02PO

But

2

p2 = (4.87)
[1 + a2(1 - 2)]

and

2 [1 + a 2(1-p2)]
2 - p2 1 + 2o 2(1- 2) +o 4 (1- P 2) 2p

[1 + a2(1 - 2 I2 (p/po) 2

= (P/) 2 (1 -p2) (I + a2)2 - 0402] (4.88)
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This gives

p2 p22P0o(1 _ p2) 1

p 2  _ 2 ) 2)2 4 2

(4.89)

[(i + a2 R 2 (T)
xx

Now

3R (T)1YY ( 4.90)

3R x(t) 27T(i + 02) 2 - R2 (T)]1/2
xx

Thus

Ry(T) =(rr)Si-1 Fxx (T) + 4.1

=y 1 - + C(. 1

lsing the fact that the indefinite integral

I dx - sin-l( )+ C (4.92)
Va2y x 2 a

where C is a constant of integration. At T = 0,

Ryy (0) = sy = + C (4.93)

from which C can be determined.
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Input/Output Cross-Correlation Function for Smooth-Limiter System

By Bussgang's Theorem, the input/output cross-correlation

function R xy() for Gaussian input data satisfies the equation

R (t) 0
xx()

Rxy (T) f-2  xg(x)p(x)dx (4.94)

where
x V

g(x) = 1 exp(-t 2/2)dt x > 0 (4.95)

p(x) = 1 exp(- x 2/2a 2) (4.96)

.ntegration by parts formula gives

fu dv = uv - fv du (4.97)

Let

u = g(x) and dv = xp(x)dx (4.98)

Then

du = g 1 x)dx = exp(- x2/2)dx (4.99)

v = - o 2 p(x) (4.100)

At x 0 and at x= , the product uv = 0. Hence
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x g(x)p(x)dx = Y2 p(x) (x)dx

0 - 0 J

exp L2

where a 2 is defined by

2 02 (4.102)
1 i + ao

The integrand is now in the form of a first-order Gaussian

probability density function for x > 0 satisfying

I-exp Idx - i (.103)
a IV7T 2

Hence

f x g(x)p(x)dx 1 a2.1)

and

R (i)
( )= xx (4.105)

V27r(1 + c)

This concludes Section 4.
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